[1]Nalbandian S. A survey on Internet of things: Applications and challenges[C] Proc of the 2015 Int Congress on Technology, Communication and Knowledge (ICTCK). Piscataway, NJ: IEEE, 2015: 165169[2]Kong L, Tan J, Huang J, et al. Edgecomputingdriven Internet of things: A survey[J]. ACM Computing Surveys, 2022, 55(8): 141[3]Stafford V. Zero trust architecture[EBOL]. 2020 [20251211]. https:tsapps.nist.govpublicationget_pdf.cfm?pub_id=930420[4]Casacuberta S, Hesse J, Lehmann A. SoK: Oblivious pseudorandom functions[C] Proc of the 7th IEEE European Symp on Security and Privacy (EuroS&P). Piscataway, NJ: IEEE, 2022: 625646[5]Freedman M J, Ishai Y, Pinkas B, et al. Keyword search and oblivious pseudorandom functions[C] Proc of the 2nd Theory of Cryptography Conference. Berlin:Springer, 2005: 303324[6]Azad M A, Abdullah S, Arshad J, et al. Verify and trust: A multidimensional survey of zerotrust security in the age of IoT[J]. Internet of Things, 2024,27: 101227[7]DeCusatis C, Liengtiraphan P, Sager A, et al. Implementing zero trust cloud networks with transport access control and first packet authentication[C] Proc of the 2016 IEEE Int Conf on Smart Cloud (SmartCloud). Piscataway, NJ: IEEE, 2016: 510[8]Lukaseder T, Halter M, Kargl F. Contextbased access control and trust scores in zero trust campus networks[COL] Proc of the SICHERHEIT 2020 [20251211]. https:dl.gi.deitemsf67b267356c24b0e8e8dad59c8080114[9]Bhattacharjya S, Saiedian H. Anovel simplified framework to secure IoT communications[COL] Proc of the 7th Int Conf on Information Systems Security and Privacy. 2021: 399406 [20251211]. https:www.academia.edu127801913A_Novel_Simplified_Framework_to_Secure_IoT_Communications[10]Gai K, She Y, Zhu L, et al. A blockchainbased access control scheme for zero trust crossorganizational data sharing[J]. ACM Trans on Internet Technology, 2023, 23(3): 125[11]Bamasag O O, YoucefToumi K. Towards continuous authentication in Internet of things based on secret sharing scheme[C] Proc of the Workshop on Embedded Systems Security. New York: ACM, 2015: 18[12]Chen D, Zhang N, Qin Z, et al. S2M: A lightweight acoustic fingerprintsbased wireless device authentication protocol[J]. IEEE Internet of Things Journal, 2016, 4(1): 88100[13]Shah S W, Syed N F, Shaghaghi A, et al. LCDA: Lightweight continuous devicetodevice authentication for a zero trust architecture (ZTA)[J]. Computers & Security, 2021, 108: 102351[14]Meng L, Huang D, An J, et al. A continuous authentication protocol without trust authority for zero trust architecture[J]. China Communications, 2022, 19(8): 198213[15]Aman M N, Chua K C, Sikdar B. Mutual authentication in IoT systems using physical unclonable functions[J]. IEEE Internet of Things Journal, 2017, 4(5): 13271340[16]Chatterjee U, Govindan V, Sadhukhan R, et al. Building PUF based authentication and key exchange protocol for IoT without explicit CRPs in verifier database[J]. IEEE Trans on Dependable and Secure Computing, 2019, 16(3): 424437[17]Suganthi S D, Anitha R, Sureshkumar V, et al. End to end light weight mutual authentication scheme in IoTbased healthcare environment[J]. Journal of Reliable Intelligent Environments, 2020, 6: 313[18]Liu Z, Guo C, Wang B. A physically secure, lightweight threefactor and anonymous user authentication protocol for IoT[J]. IEEE Access, 2020, 8: 195914195928[19]Subramani J, Maria A, Rajasekaran A S, et al. Lightweight privacy and confidentiality preserving anonymous authentication scheme for WBANs[J]. IEEE Trans on Industrial Informatics, 2021, 18(5): 34843491[20]Babaei A, Schiele G. Physical unclonable functions in the Internet of things: State of the art and open challenges[J]. Sensors, 2019, 19(14): 3208[21]Li S, Zhang T, Yu B, et al. A provably secure and practical PUFbased endtoend mutual authentication and key exchange protocol for IoT[J]. IEEE Sensors Journal, 2021, 21(4): 54875501
|