[1]Watson M R, Marnerides A K, Mauthe A, et al. Malware detection in cloud computing infrastructures[J]. IEEE Trans on Dependable and Secure Computing, 2015,13(2): 192205[2]CidFuentes J A, Szabo C, Falkner K. Adaptive performance anomaly detection in distributed systems using online svms[J]. IEEE Trans on Dependable and Secure Computing, 2018, 17(5): 928941[3]Moustafa N, Turnbull B, Choo KK R. An ensemble intrusion detection technique based on proposed statistical flow features for protecting network traffic of Internet of things[J]. IEEE Internet of Things Journal, 2018, 6(3): 48154830[4]Tang T A, Mhamdi L, McLernon D, et al. Deep learning approach for network intrusion detection in software defined networking[C] Proc of 2016 Int Conf on Wireless Networks and Mobile Communications. Piscataway, NJ: IEEE, 2016: 258263[5]Yin C, Zhu Y, Fei J, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5: 2195421961[6]Roy S S, Mallik A, Gulati R, et al. A deep learning based artificial neural network approach for intrusion detection[C] Proc of the 3rd Int Conf on Mathematics and Computing. Berlin: Springer, 2017: 4453[7]Li Z, Qin Z, Huang K, et al. Intrusion detection using convolutional neural networks for representation learning[C] Proc of Int Conf on Neural Information Processing. Berlin: Springer, 2017: 858866[8]Hochreiter S, Schmidhuber J. Long shortterm memory[J].Neural Computation,1997,9(8): 17351780[9]Tan Z, A. Jamdagni A, He X, et al. Detection of denialofservice attacks based on computer vision techniques[J]. IEEE Trans on Computers, 2015, 64(9): 25192533[10]Tan Z, A. Jamdagni A, He X, et al. A system for denialofservice attack detection based on multivariate correlation analysis[J]. IEEE Trans on Parallel and Distributed Systems, 2014, 25(2): 447456[11]Watson M R, Marnerides A K, Mauthe A, et al. Malware detection in cloud computing infrastructures[J]. IEEE Trans on Dependable and Secure Computing, 2016, 13(2): 192205[12]McIntosh T, JangJaccard J, Watters P, et al. The inadequacy of entropybased ransomware detection[C] Proc of Int Conf on Neural Information Processing. Berlin: Springer, 2019: 181189[13]Dickerso J E, Dickerson J A. Fuzzy network profiling for intrusion detection[C] Proc of the 19th Int Conf of the North American Fuzzy Information Processing Society NAFIPS. Piscataway, NJ: IEEE, 2000: 301306[14]Ambusaidi M A, He X, Nanda P, et al. Building an intrusion detection system using a filterbased feature selection algorithm[J]. IEEE Trans on Computers, 2016, 65(10): 29862998[15]Shone N, Ngoc T N, Phai V D, et al. A deep learning approach to network intrusion detection[J]. IEEE Trans on Emerging Topics in Computational Intelligence, 2018, 2(1): 4150[16]Wu P, Guo H. Lunet: A deep neural network for networkintrusion detection[J]. arXiv preprint, arXiv:1909.10031, 2019[17]Xu W, JangJaccard J, Singh A, et al. Improving performance of autoencoderbased network anomaly detection on NSLKDD dataset[J]. IEEE Access, 2021, 9: 140136140146[18]Javaid A, Niyaz Q, Sun W, et al. A deep learning approach for network intrusion detection system[C] Proc of the 9th EAI Int Conf on Bioinspired Information and Communications Technologies(ICST). New York: ACM, 2016: 2126[19]AlQatf M, Lasheng Y, AlHabib M, et al. Deeplearning approach combining sparse autoencoder with SVM for network intrusion detection[J]. IEEE Access, 2018, 6: 5284352856[20]Zhang B, Yu Y, Li J. Network intrusion detection based onstacked sparse autoencoder and binary tree ensemble method[C] Proc of 2018 IEEE Int Conf on Communications Workshops. Piscataway, NJ: IEEE, 2018: 16
|