[1]Frischholz R W, Werner A. Avoiding replayattacks in a face recognitionsystenm using headpose estimation[C] Proc of IEEE Int SOI Conf. Piscataway, NJ: IEEE, 2003: 234235[2]Schuckers S. Spoofing and antispoofing measures[J]. Information Security Technical Report, 2002, 7(4): 5662[3]Atoum Y, Liu Yaojie, Jourabloo A, et al. Face antispoofing using patch and depthbased CNNs[C] Proc of IEEE Int Joint Conf on Biometrics. Piscataway, NJ: IEEE, 2018: 319328[4]Parkin A, Grinchuk O. Creating artificial modalities to solve RGB liveness[J]. arXiv preprint, arXiv:2006.16028, 2020[5]George A, Marcel S. Cross modal focal loss for RGBD face antispoofing[C] Proc of the IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2021: 78827891[6]Yu Zitong, Liu Ajian, Zhao Chenxu, et al. Flexiblemodal face antispoofing: A benchmark[J]. arXiv preprint, arXiv:2202.08192, 2022[7]刘龙庚, 任宇, 王莉. 基于多模态与多尺度融合的抗欺骗人脸检测算法研究[J]. 信息安全研究, 2022, 8(5): 513520[8]Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv preprint, arXiv:2010.11929, 2020[9]George A, Marcel S. On the effectiveness of vision transformers for zeroshot face antispoofing[C] Proc of 2021 IEEE Int Joint Conf on Biometrics (IJCB). Piscataway, NJ: IEEE, 2021: 18[10]Huang Hsinping, Sun Deqing, Liu Yaojie, et al. Adaptive transformers for robust fewshot crossdomain face antispoofing[J]. arXiv preprint, arXiv: 2203.12175, 2022[11]Mehta S, Rastegari M. MobileViT: Lightweight, generalpurpose, and mobilefriendly vision transformer[J]. arXiv preprint, arXiv: 2110. 02178, 2021[12]Ge Tao, Wei Furu. EdgeFormer: A parameterefficient transformer for ondevice seq2seq generation[J]. arXiv preprint, arXiv:2202.07959, 2022[13]Zhang Zhiwei, Yan Junjie, Liu Sifei, et al. A face antispoofing database with diverse attacks[C] Proc of the 5th IEEE IAPR Int Conf on Biometrics (ICB). Piscataway, NJ: IEEE, 2012: 2631[14]Chingovska I, Anijos A, Marcel S. On the effectiveness of local binary patterns in face antispoofing[C] Proc of the 2012 Int Conf of Biometrics Special Interest Group (BIOSIG). Piscataway, NJ: IEEE, 2012: 17[15]Zhang Shifeng, Wang Xiaobo, Liu Ajian, et al. A dataset and benchmark for largescale multimodal face antispoofing[C] Proc of the 2019 IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 919928[16]Patel K, Bur A M, Li Fengjun, et al. Aggregating global features into local vision transformer[J]. arXiv preprint, arXiv: 2201.12903, 2022[17]Hu Jie, Shen Li, Sun Gang. Squeezeandexcitation networks[C] Proc of the 2018 IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 71327141[18]Han Kai, Wang Yunhe, Tian Qi, et al. Ghost Net: More features from cheap operations[C] Proc of the 2020 IEEECVF Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 15771586[19]He Dan, He Xiping, Yuan Rui, et al. Lightweight networkbased multimodal feature fusion for face antispoofing[J]. The Visual Computer, 2022, 39(4): 14231435[20]Sandler M, Howrd A, Zhu Menglong, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C] Proc of the 2018 IEEECVF Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 45104520[21]Hou Qibin, Zhou Daquan, Feng Jiashi. Coordinate attention for efficient mobile network design[C] Proc of Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2021: 1371313722[22]He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770778[23]Ma Ningning, Zhang Xiangyu, Zheng Haitao, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C] Proc of the 2018 European Conf on Computer Vision (ECCV). Berlin: Springer, 2018: 116131[24]Zhang Peng, Zou Fuhao, Wu Zhiwen, et al. FeatherNets: Convolutional neural networks as light as feather for face antispoofing[C] Proc of the 2019 IEEECVF Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2019: 15741583[25]Komulainen J, Hadid A, Matti P. Face spoofing detection using dynamic texture[C] Proc of Asian Conf on Computer Vision. Berlin: Springer, 2012: 56[26]Li Lei, Feng Xiaoyi, Jiang Xiaoyue, et al. Face antispoofing via deep local binary patterns[C] Proc of Int Conf on Image Processing. Piscataway, NJ: IEEE, 2017: 101105[27]Khammari M. Robust face antispoofing using CNN with LBP and WLD[J]. IET Image Processing, 2019, 13(11): 18801884[28]Ning Xin, Li Weijun, Wei Meili, et al. Face antispoofing based on deep stack generalization networks[C] Proc of the Int Conf on Pattern Recognition Applications and Methods. Berlin: Springer, 2018: 317323[29]栾晓, 李晓双. 基于多特征融合的人脸活体检测算法[J].计算机科学, 2021, 48(S2): 409415[30]Li Haoliang, He Peisong, Wang Shiqi, et al. Learning generalized deep feature representation for face antispoofing[J]. IEEE Trans on Information Forensics & Security, 2018, 13(10): 26392652[31]Chingovska I, Anijos A, Marcel S. On the effectiveness of local binary patterns in face antispoofing[C] Proc of the 2012 Int Conf of Biometrics Special Interest Group (BIOSIG). Piscataway, NJ: IEEE, 2012: 17[32]Tirunagari S, Poh N, Windridge D, et al. Detection of face spoofing using visual dynamics[J]. IEEE Trans on Information Forensics & Security, 2015, 10(4): 762777[33]Jourabloo A, Liu Yaojie, Liu Xiaoming. Face despoofing: Antispoofing via noise modeling[C] Proc of European Conf on Computer Vision. 2018: 290306[34]Yu Zitong, Zhao Chenxu, Wang Zezheng, et al. Searching central difference convolutional networks for face antispoofing[C] Proc of the 2020 IEEE Conf on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2020: 52945304
|