[1]新华网. 公安部: 十大电信网络诈骗类型高发 占比近80%[EBOL]. (20230625) [20240216]. http:www.news.cnpolitics20230615c_1212199354.htm[2]腾讯安全大数据实验室. Android应用网络欺诈安全报告[EBOL]. (20230602) [20240216]. https:www.baogaopai.combaogaoview578208.html[3]Chen Z, Wu L, Hu Y, et al. Lifting the grey curtain: Analyzing the ecosystem of Android scam apps[J]. IEEE Trans on Dependable and Secure Computing, 2024, 21(4): 34063421[4]Chen Z, Liu J, Hu Y, et al. Illegal but not malware: An underground economy app detection system based on usage scenario[J]. arXiv preprint, arXiv:2209.01317, 2022[5]Gibert D, Mateu C, Planes J. The rise of machine learning for detection and classification of malware: Research developments, trends and challenges[J]. Journal of Network and Computer Applications, 2020, 153: 102526[6]范铭, 刘烃, 刘均, 等. 安卓恶意软件检测方法综述[J]. 中国科学: 信息科学, 2020, 50(8): 11481177[7]孙才俊, 白冰, 王伟忠, 等. 基于指令序列嵌入的安卓恶意应用检测框架[J]. 信息安全研究, 2022, 8(8): 777785[8]Chen Z, Liu J, Hu Y, et al. DeUEDroid: Detecting underground economy apps based on UTG similarity[C] Proc of the 32nd ACM SIGSOFT Int Symp on Software Testing and Analy. Seattle, USA: Association for Computing Machinery, 2023: 223235[9]李创丰, 李云龙, 孙伟. 基于CNN和朴素贝叶斯方法的安卓恶意应用检测算法[J]. 信息安全研究, 2019, 5(6): 470476[10]Kim T G, Kang B J, Rho M, et al. A multimodal deep learning method for android malware detection using various features[J]. IEEE Trans on Information Forensics and Security, 2018, 14(3): 773788[11]冀甜甜, 方滨兴, 崔翔, 等. 深度学习赋能的恶意代码攻防研究进展[J]. 计算机学报, 2021, 44(4): 27[12]Zhang X, Breitinger F, Luechinger E, et al. Android application forensics: A survey of obfuscation, obfuscation detection and deobfuscation techniques and their impact on investigations[J]. Forensic Science International: Digital Investigation, 2021, 39: 301285 |