[1]施炜利. 基于改进朴素贝叶斯的未知恶意软件识别方法[J]. 信息与电脑: 理论版, 2023, 35(14): 172174[2]王志文. 恶意软件识别模型轻量化研究[D]. 济南: 齐鲁工业大学, 2023[3]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770778[4]Ronneberger O, Fischer P, Brox T. UNet: Convolutional networks for biomedical image segmentation[C] Proc of the 18th Int Conf Medical Image Computing and ComputerAssisted Intervention. Berlin: Springer, 2015: 234241[5]Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[JOL]. Advances in Neural Information Processing Systems, 2017 [20240716]. https:proceedings.neurips.ccpaper2017hash3f5ee243547dee91fbd053c1c4a845aaAbstract.html[6]Gibert D, Mateu C, Planes J, et al. Using convolutional neural networks for classification of malware represented as images[JOL]. Journal of Computer Virology and Hacking Techniques, 2019 [20240716]. http:dx.doi.org10.1007s1141601803230[7]Chaurasia A, Culurciello E. Linknet: Exploiting encoder representations for efficient semantic segmentation[COL] Proc of the 2017 IEEE Visual Communications and Image Processing (VCIP). Piscataway, NJ: IEEE, 2017 [20240716]. http:dx.doi.org10.1109vcip.2017.8305148[8]Zhou L, Zhang C, Wu M. DLinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ: IEEE, 2018: 182186[9]Jiang Ruilin, Qin Renchao. Multineural network malicious code detection model based on depthwise separable convolution[J]. Journal of Computer Applications, 2023, 43(5): 15271533[10]Xiao X, Lian S, Luo Z, et al, Weighted ResUNet for highquality retina vessel segmentation[C] Proc of the 9th Int Conf on Information Technology in Medicine and Education (ITME). Piscataway, NJ: IEEE, 2018: 327331[11]Guan S, Khan A, Sikdar S, et al, Fully dense UNet for 2D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 568576[12]Huang H. UNet3+: A fullscale connected UNet for medical image segmentation[C] Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2020: 10551059[13]Jha D, Smedsrud P H, Riegler M A, et al. ResUNet++: An advanced architecture for medical image segmentation[C] Proc of 2019 IEEE Int Symp on Multimedia (ISM). Piscataway, NJ: IEEE, 2019: 2252255[14]Lou A, Guan S, Loew M. DCUNet: Rethinking the UNet architecture with dual channel efficient CNN for medical image segmentation[G] SPIE 11596: Proc of Medical Imaging 2021. Bellingham,WA: SPIE, 2021, 11596: 758768[15]Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: AlexNetlevel accuracy with 50x fewer parameters and <0.5MB model size[J]. arXiv preprint, arXiv:1602.07360, 2016[16]Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint, arXiv:2102.04306, 2021[17]Sun Y, Dong L, Huang S, et al. Retentive network: A successor to transformer for large language models[J]. arXiv preprint, arXiv:2307.08621, 2023[18]Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. arXiv preprint, arXiv:1409.0473, 2014[19]Zhang X, Zhou X, Lin M, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 68486856[20]Ma N, Zhang X, Zheng H T, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design[C] Proc of the European Conf on Computer Vision (ECCV). Berlin: Springer, 2018: 116131[21]Chollet F. Xception: Deep learning with depthwise separable convolutions[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 12511258[22]Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint, arXiv:1607.06450, 2016[23]Wu Y, He K. Group normalization[JOL]. International Journal of Computer Vision, 2020 [20240716]. http:dx.doi.org10.1007s1126301901198w[24]Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[COL] Proc of the Int Conf on Machine Learning. 2015 [20240716]. http:proceedings. mlr. pressv37ioffe15.html[25]Cui Z, Du L, Wang P, et al. Malicious code detection based on CNNs and multiobjective algorithm[J]. Journal of Parallel and Distributed Computing, 2019, 129: 5058[26]Lad S S, Adamuthe A C. Malware classification with improved convolutional neural network model[J]. International Journal of Computer Network & Information Security, 2020, 12(6): 3043[27]Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C] Proc of the IEEECVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2019: 13141324 |