信息安全研究 ›› 2025, Vol. 11 ›› Issue (1): 28-.

• 学术论文 • 上一篇    下一篇

 基于位图表征与UAtt分类网络的恶意软件识别技术

屈梦楠靳宇浩张光华   

  1. (河北科技大学信息科学与工程学院石家庄050018)
  • 出版日期:2025-01-24 发布日期:2025-01-24
  • 通讯作者: 屈梦楠 工程师.主要研究方向为图像处理与机器学习、网络与信息安全. qumengnan@quanfita.cn
  • 作者简介:屈梦楠 工程师.主要研究方向为图像处理与机器学习、网络与信息安全. qumengnan@quanfita.cn 靳宇浩 工程师.主要研究方向为网络与信息安全、威胁情报. jyh8888@88.com 张光华 博士,教授.主要研究方向为人工智能安全、物联网安全、数据安全分析与态势感知. zhanggh@hebust.edu.cn

Malware Identification Technology Based on Bitmap Representation  and UAtt Classification Network

Qu Mengnan, Jin Yuhao, and Zhang Guanghua   

  1. (School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018)
  • Online:2025-01-24 Published:2025-01-24

摘要: 在计算机安全领域,恶意软件识别一直是一个具有挑战性的任务,当前基于深度学习的恶意软件检测技术存在泛化能力不足、性能损耗高等诸多问题.为解决上述问题,提出一种基于位图表征与UAtt分类网络恶意软件识别新技术.UAtt分类网络在残差UNet网络的基础上,结合了注意力分类器,自适应地聚焦于恶意样本的重要区域,从而提高分类性能.实验中使用多个公开数据集进行了验证,并与其他方法进行了比较分析.实验结果表明,该网络在恶意软件识别任务中取得了优越的性能且拥有更少的参数量.

关键词: 恶意软件识别, 图像处理, 残差UNet网络, 注意力机制

Abstract: In the field of computer security, malware identification has always been a challenging task. The current malware detection technology based on deep learning has many problems such as insufficient generalization ability and high performance loss. To surmount these obstacles, this paper introduces an innovative technique predicated upon bitmap representation coupled with a UAtt classification network for the discernment of malicious software. This technique augments the residual UNet architecture with an integrated attention mechanism, culminating in the UAtt classification network that exhibits adaptive focusing on salient regions of malicious samples, thereby ameliorating classification efficacy. Comprehensive validation through the utilization of various public datasets ensued, accompanied by a comparative analysis against alternative methodologies. The empirical findings substantiate the network’s superior performance within the context of malware identification tasks.

Key words: malware identification, image processing, residual UNet network, attention mechanism

中图分类号: