[1]Lin Wenhui, Lin Hsiaochung, Wang Ping, et al. Using convolutional neural networks to network intrusion detection for cyber threats[C] Proc of the 2018 IEEE Int Conf on Applied System Invention (ICASI). Piscataway, NJ: IEEE, 2018: 11071110[2]Li Xueying, Tang Rui, Song Wei. Intrusion detection system using improved convolution neural network[C] Proc of the 11th Int Conf on Information and Communication Technology (ICTech)). Piscataway, NJ: IEEE, 2022: 97100[3]肖斌, 甘昀, 汪敏, 等. 基于端口注意力与通道空间注意力的网络异常流量检测[J]. 计算机应用, 2024, 44(4): 10271034[4]ElGhamry A, Darwish A, Hassanien A E. An optimized CNNbased intrusion detection system for reducing risks in smart farming[J]. Internet of Things, 2023, 22: 100709[5]Su Tongtong, Sun Huazhi, Zhu Jinqi, et al. BAT: Deep learning methods on network intrusion detection using NSLKDD dataset[J]. IEEE Access, 2020, 8: 2957529585[6]Udas P B, Karim M E, Roy K S. SPIDER: A shallow PCA based network intrusion detection system with enhanced recurrent neural networks[J]. Journal of King Saud UniversityComputer and Information Sciences, 2022, 34(10): 1024610272[7]尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络双向长短期记忆网络模型的流量异常检测方法[J]. 电子与信息学报, 2023, 45(10): 37193728[8]Said R B, Askerzade I. Attentionbased CNNBiLSTM deep learning approach for network intrusion detection system in software defined networks[C] Proc of the 5th Int Conf on Problems of Cybernetics and Informatics (PCI). Piscataway, NJ: IEEE, 2023: 15[9]杨晓文, 张健, 况立群, 等. 融合CNNBiGRU和注意力机制的网络入侵检测模型[J]. 信息安全研究, 2024, 10(3): 202208[10]Ullah F, Ullah S, Srivastava G, et al. IDSINT: Intrusion detection system using transformerbased transfer learning for imbalanced network traffic[J]. Digital Communications and Networks, 2024, 10(1): 190204[11]Szegedy C,Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C] Proc of the Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 28182826[12]Howard A G, Zhu M, Chen B, et al.Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint, arXiv:1704.04861, 2017[13]Schuster M, Paliwal K K. Bidirectional recurrent neural networks[J]. IEEE Trans on Signal Processing, 1997, 45(11): 26732681[14]Sharafaldin I, Lashkari A H, Ghorbani A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C] Proc of Int Conf on Information Systems Security and Privacy. Setúbal: Scite Press, 2018: 108116[15]Sharafaldin I, Lashkari A H, Hakak S, et al. Developing realistic distributed denial of service (DDoS) attack dataset and taxonomy[C] Proc of the Int Carnahan Conf on Security Technology (ICCST). Piscataway, NJ: IEEE, 2019: 18[16]Zhao Junjie, Liu Yongmin, Zhang Qianlei, et al. CNNAttBiLSTM mechanism: A DDoS attack detection method based on attention mechanism and CNNBiLSTM[J]. IEEE Access, 2023, 11: 136308136317[17]Kumar G S C, Kumar R K, Kumar K P V, et al. Deep residual convolutional neuralnetwork: An efficient technique for intrusion detection system[J]. Expert Systems with Applications, 2024, 238: 121912
|