[1]Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models[C] Proc of 2017 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2017: 318[2]Melis L, Song C, De Cristofaro E, et al. Exploiting unintended feature leakage in collaborative learning[C] Proc of 2019 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2019: 691706[3]Carlini N, Tramer F, Wallace E, et al. Extracting training data from large language models[C] Proc of USENIX Security Symposium. Berkeley, CA: USENIX Association, 2021: 26332650[4]Radford A, Wu J, Child R, et al. Language models are unsupervised multitask learners[EBOL]. [20241201]. https:insightcivic.s3.useast1.amazonaws.comlanguagemodels.pdf[5]Raffel C, Shazeer N, Roberts A, et al. Exploring the limits of transfer learning with a unified texttotext transformer[J]. The Journal of Machine Learning Research, 2020, 21(1): 54855551[6]Zhang S, Roller S, Goyal N, et al. Opt: Open pretrained transformer language models[J]. arXiv preprint, arXiv:2205.01068, 2022[7]Devlin J. Bert: Pretraining of deep bidirectional transformers for language understanding[J]. arXiv preprint, arXiv:1810.04805, 2018[8]Brown T, Mann B, Ryder N, et al. Language models are fewshot learners[J]. Advances in Neural Information Processing Systems, 2020, 33: 18771901[9]曾辉, 熊诗雨, 狄永正, 等. 基于差分隐私的联邦大模型微调技术[J]. 信息安全研究, 2024, 10(7): 616623[10]Yeom S, Giacomelli I, Fredrikson M, et al. Privacy risk in machine learning: Analyzing the connection to overfitting[C] Proc of the 31st IEEE Computer Security Foundations Symposium (CSF). Piscataway, NJ: IEEE, 2018: 268282.[11]Salem A, Zhang Y, Humbert M, et al. Mlleaks: Model and data independent membership inference attacks and defenses on machine learning models[J]. arXiv preprint, arXiv:1806.01246, 2018[12]Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active whitebox inference attacks against centralized and federated learning[C] Proc of 2019 IEEE Symp on Security and Privacy (SP). Piscataway, NJ: IEEE, 2019: 739753[13]Leino K, Fredrikson M. Stolen memories: Leveraging model memorization for calibrated {WhiteBox} membership inference[C] Proc of the 29th USENIX Security Symposium (USENIX Security 20). Berkeley, CA: USENIX Association, 2020: 16051622[14]Elazar Y, Goldberg Y. Adversarial removal of demographic attributes from text data[J]. arXiv preprint, arXiv:1808.06640, 2018[15]Harnik D, Khaitzin E, Sotnikov D, et al. A fast implementation of deflate[C] Proc of 2014 Data Compression Conference. Piscataway, NJ: IEEE, 2014: 223232[16]Chaudhuri S, Ganjam K, Ganti V, et al. Robust and efficient fuzzy match for online data cleaning[C] Proc of the 2003 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2003: 313324 |