[1]McMahan B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[COL] Proc of Int Conf on Artificial Intelligence and Statistics. PMLR, 2017 [20240513]. https:proceedings.mlr.pressv54mcmahan17a.html[2]Wang Wenxin, Liu Caiyun, Yue Ziyan. Industrial Internet structure optimization based on federated learning[J]. Industry Information Security, 2022 (1): 103107[3]Bagdasaryan E, Veit A, Hua Y, et al. How to backdoor federated learning[COL] Proc of Int Conf on Artificial Intelligence and Statistics. PMLR, 2020 [20240513]. https:proceedings.mlr.pressv108bagdasaryan20a.html[4]Blanchard P, ElMhamdi E M, Guerraoui R, et al. Machine learning with adversaries: Byzantine tolerant gradient descent[JOL]. Advances in Neural Information Processing Systems, 2017 [20240513]. https:papers.nips.ccpaper_filespaper2017hashf4b9ec30ad9f68f89b29639786cb62efAbstract.html[5]Fung C, Yoon C J M, Beschastnikh I. Mitigating sybils in federated learning poisoning[J]. arXiv preprint, arXiv:1808.04866, 2018[6]Fang M, Cao X, Jia J, et al. Local model poisoning attacks to {ByzantineRobust} federated learning[C] Proc of the 29th USENIX Security Symposium (USENIX Security 20). Berkeley, CA: USENIX Association, 2020: 16051622[7]Awan S, Luo B, Li F. Contra: Defending against poisoning attacks in federated learning[C] Proc of the 26th European Symp on Research in Computer Security(ESORICS 2021). Berlin: Springer, 2021: 455475[8]Uprety A, Rawat D B. Mitigating poisoning attack in federated learning[C] Proc of the 2021 IEEE Symp Series on Computational Intelligence (SSCI). Piscataway, NJ: IEEE, 2021: 17[9]Hallaji E, RazaviFar R, Saif M, et al. Label noise analysis meets adversarial training: A defense against label poisoning in federated learning[J]. KnowledgeBased Systems, 2023, 266: 110384[10]Ovi P R, Gangopadhyay A, Erbacher R F, et al. Confident federated learning to tackle label flipped data poisoning attacks[C] Proc of the Artificial Intelligence and Machine Learning for MultiDomain Operations Applications. Bellingham, WA: SPIE, 2023: 263272[11]Tolpegin V, Truex S, Gursoy M E, et al. Data poisoning attacks against federated learning systems[C] Proc of the 25th European Symp on Research in Computer Security (ESORICS 2020). Berlin: Springer, 2020: 480501[12]Anowar F, Sadaoui S, Selim B. Conceptual and empirical comparison of dimensionality reduction algorithms (pca, kpca, lda, mds, svd, lle, isomap, le, ica, tsne)[J]. Computer Science Review, 2021, 40: 100378[13]Schlkopf B, Smola A, Müller K R. Kernel principal component analysis[C] Proc of Int Conf on Artificial Neural Networks. Berlin: Springer, 1997: 583588[14]Fung C, Yoon C J M, Beschastnikh I. The limitations of federated learning in sybil settings[C] Proc of the 23rd Int Symp on Research in Attacks, Intrusions and Defenses (RAID 2020). Berlin: Springer, 2020: 301316[15]Xiao H, Rasul K, Vollgraf R. Fashionmnist: A novel image dataset for benchmarking machine learning algorithms[J]. arXiv preprint, arXiv:1708.07747, 2017 |