[1]Koblitz N. Introduction to Elliptic Curves and Moduar Forms[M]. Berlin: Springer, 1984: 375384[2]Miller V. Uses of elliptic curves in cryptography[G] LNCS 218: Advances in Cryptology—CRYPTO85. Berlin: Springer, 1986: 417426[3]Shamir A. Identitybased cryptosystems and signature schemes[G] LNCS 196: Advances in Cryptology—Crypto84. Berlin: Springer, 1984: 4753[4]Sakai R, Ohgishi K, Kasahara M. Cryptosystems based on pairing[COL] Proc of the 2000 Symp on Cryptography and Information Security. 2000 [20161025]. http:link.springer.comchapter10.1007%2F11526018_3[5]Boneh D, Franklin M. Identity based encryption from Weil pairing[G] LNCS 2139: Advances in Cryptology—Crypto2001. Berlin: Springer, 2001: 213229[6]Barreto M, Naehrig M. Pairingfriendly elliptic curves of prime order[G] LNCS 3897: Proc of SAC 2005. Berlin: Springer, 2006: 319331[7]Goldwasser S, Micali S. Probabilistic encryption and how to play mental poker keeping secret all partial information[COL] Proc of the 14th Symp on Theory of Computing. 1982: 365377 [20161025]. https:www.cs.purdue.eduhomesninghuireadingsQual2GoldwasserMicali82.pdf[8]Cha J C, Cheon J H. An identitybased signature from gap DiffieHellman groups[G] LNCS 2567: Proc of PKC03. Berlin: Springer, 2003: 1830[9]Boneh D, Franklin M. Identitybased encryption from the Weil pairing[G] LNCS 2139: Proc of Crypto01. Berlin: Springer, 2001: 213229[10]Bellare M, Rogaway P. Entity authentication and key distribution[G] LNCS 773: Proc of Crypto93. Berlin: Springer, 1993: 232249[11]Chen L, Kudla C. Identity based authenticated key agreement from pairings[C] Proc of the 16th IEEE Computer Security Foundations Workshop. Piscataway, NJ: IEEE, 2003: 219233[12]Chen L, Cheng Z, Smart N P. Identitybased key agreement protocols from pairings[J]. International Journal of Information Security, 2007, 6(4): 213241[13]Cheon J H. Security analysis of the strong DiffieHellman problem[G] LNCS 4004. Berlin: Springer, 2006: 111[14]Galbraith S D, Hess F, Vercauteren F. Aspects of pairing inversion[J]. IEEE Trans on Information Theory, 2008, 54(12): 57195728[15]Galbraith S, Gaudry P. Recent progress on the elliptic curve discrete logarithm problem[J]. Designs, Codes and Cryptography, 2016 (78): 5172[16]Menezes A J, Okamoto T, Vanstone S A. Reducing elliptic curve logarithms to logarithms in a finite field[J]. IEEE Trans on Info Theory, 1993, 39(5): 16391646[17]Gordon D. Discrete logarithms in GF(p) using the number field sieve[J]. SIAM Journal on Discrete Mathematics, 1993, 6(1): 124138[18]Joux A. A new index calculus algorithm with complexity L(14+o(1)) in very small characteristic, IACR ePrint Report 2013095[R]. Berlin: Springer, 2013[19]Barbulescu R, Gaudry P, Joux A, et al. A heuristic quasipolynomial algorithm for discrete logarithm in finite fields of small characteristic[G] LNCS 8441: Proc of Eurocrypt14. Berlin: Springer, 2014: 116[20]Barbulescu R, Gaudry P, Guillevic A, et al. Improving NFS for the discrete logarithm problem in nonprime finite fields[G] LNCS 9056: Proc of Eurocrypt15. Berlin: Springer, 2015: 129155[21]Kim T, Barbulescu R. Extended tower number field sieve: A new complexity for the medium prime case[G] LNCS 9814: Proc of Crypto16. Berlin: Springer, 2016: 543571[22]Jeong J. Extended tower number field sieve with application to finite fields of arbitrary composite extension degree, IACR ePrint Report 2016526[R]. Berlin: Springer, 2016
|