[1]Meunier V, Leal D S, Morcrette M, et al. Design of workflows for crosstalk detection and lifetime deviation onset in Liion batteries[J]. Joule, 2023, 7(1): 4256[2]Brendan M, Eider M, Daniel R, et al. Communicationefficient learning of deep networks from decentralized data[C] Proc of the 20th Int Conf on Artificial Intelligence and Statistics. New York: PMLR, 2017: 12731282[3]Zhang Jingwen, Zhang Jiale, Chen Junjun, et al. GAN enhanced membership inference: A passive local attack in federated learning[C] Proc of the 2020 IEEE Int Conf on Communications (ICC). Piscataway, NJ: IEEE, 2020: 16[4]Tramer F, Zhang Fan, Juels A, et al. Stealing machine learning models via prediction APIs[C] Proc of the 25th USENIX Security Symposium. New York: ACM, 2016: 601618[5]曾辉, 熊诗雨, 狄永正, 等. 基于差分隐私的联邦大模型微调技术[J]. 信息安全研究, 2024, 10(7): 616623[6]Wang Chaoqi, Zhang Guodong, Grosse R. Picking winning tickets before training by preserving gradient flow[C] Proc of Int Conf on Learning Representations. Addis Ababa: OpenReviewe, 2020: 111[7]Li Ang, Sun Jingwei, Wang Binghui, et al. LotteryFL: Empower edge intelligence with personalized and communicationefficient federated learning[C] Proc of 2021 IEEEACM Symp on Edge Computing. New York: ACM, 2021: 6879[8]Jiang Yuang, Wang Shiqiang, Valls V, et al. Model pruning enables efficient federated learning on edge devices[J]. IEEE Trans on Neural Networks and Learning Systems, 2023, 34(12): 1027410386[9]Yu Sixing, Nguyen P, Anwar A, et al. Heterogeneous federated learning using dynamic model pruning and adaptive gradient[C] Proc of the 23rd IEEEACM Int Symp on Cluster, Cloud and Internet Computing (CCGrid). New York: ACM, 2023: 322330[10]Khanh T Q, Tran T H, Le T L. Communication cost reduction using sparse ternary compression and encoding for FedAvg[C] Proc of Int Conf on Information and Communication Technology Convergence. New York: IEEE, 2021: 351356[11]Sinaga M A, Alhamidi M R, Rachmadi M F, et al. Variational contrastive log ratio upper bound of mutual information for training generative models[C] Proc of Int Workshop on Big Data and Information Security. Piscataway, NJ: IEEE, 2021: 916[12]Li Tian, Sahu A K, Talwalkar A, et al. Federated learning: Challenges, methods, and future directions[J]. IEEE Signal Processing Magazine, 2020, 37(3): 5060[13]Seyed A O, Ali S S, Sina S, et al. A hybrid deep learning architecture for privacypreserving mobile analytics[J]. IEEE Internet of Things Journal, 2020, 7(5): 45054518[14]Zhan Ziwei, Zhang Xiaoxi. Computationeffective personalized federated learning: A meta learning approach[C] Proc of the 43rd IEEE Int Conf on Distributed Computing Systems. Piscataway, NJ: IEEE, 2023: 957958[15]Liu Sicong, Du Junzhao, Shrivastava A, et al. Privacy adversarial network: Representation learning for mobile data privacy[C] Proc of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. New York: ACM, 2019: 118
|