[1]杨晶. 面向交易隐私保护与监管的比特币混币机制研究[D]. 北京: 北京理工大学, 2018[2]李易. 比特币混币交易检测及模式分析[D]. 海口: 海南师范大学, 2023[3]Wu J, Liu J, Chen W, et al. Detecting mixing services via mining bitcoin transaction network with hybrid motifs[J]. IEEE Trans on Systems, Man, and Cybernetics: Systems, 2022, 52(4): 22372249[4]钟晔. 比特币混币服务地址识别研究[D]. 广州: 广州大学, 2022[5]Nan L, Tao D. Bitcoin mixing detection using deep autoencoder[C] Proc of the 3rd IEEE Int Conf on Data Science in Cyberspace (DSC). Piscataway, NJ: IEEE, 2018: 280287[6]Huang Zhengjie, Huang Yunyang, Qian Peng, et al. Demystifying bitcoin address behavior via graph neural networks[C] Proc of the 39th IEEE Int Conf on Data Engineering(ICDE 2023). Piscataway, NJ: IEEE, 2023: 17471760[7]Wu L, Hu Y, Zhou Y, et al. Towards understanding and demystifying bitcoin mixing services[C] Proc of the Web Conf 2021(WWW’21). New York: ACM, 2021: 3344[8]郑海潇, 文斌. 基于图卷积网络的比特币非法交易识别方法[J]. 信息网络安全, 2021, 21(9): 7479[9]Kipf T N, Welling M. Semisupervised classification with graph convolutional networks[J]. arXiv preprint, arXiv:1609.02907, 2016[10]李虎, 陈云芳, 张伟. 基于CoinJoin实现的混币交易检测方法——以Wasabi平台为例[J]. 网络与信息安全学报, 2023, 9(6): 140153[11]Chen T, Bian S, Sun Y. Are powerful graph neural nets necessary? Adissection on graph classification[J]. arXiv preprint, arXiv:1905.04579, 2019[12]Pei Y, Huang T, van Ipenburg W, et al. ResGCN: Attentionbased deep residual modeling for anomaly detection on attributed networks[J]. Machine Learning, 2022, 111(2): 519541
|