信息安全研究 ›› 2025, Vol. 11 ›› Issue (7): 603-.

• 学术论文 • 上一篇    下一篇

基于ResGCN的比特币混币交易地址识别研究

邱雨蝶汤艳君戴熙来王子晨   

  1. (中国刑事警察学院公安信息技术与情报学院沈阳110854)
  • 出版日期:2025-07-29 发布日期:2025-07-29
  • 通讯作者: 邱雨蝶 硕士研究生.主要研究方向为网络空间安全与电子数据取证. 2094267903@qq.com
  • 作者简介:邱雨蝶 硕士研究生.主要研究方向为网络空间安全与电子数据取证. 2094267903@qq.com 汤艳君 教授,硕士生导师.主要研究方向为电子数据取证. tyj6631@sina.com 戴熙来 硕士研究生.主要研究方向为网络空间安全与电子数据取证. 939722097@qq.com 王子晨 硕士.主要研究方向为网络空间安全与电子数据取证. 2022110136@cipuc.edu.cn

Research on Address Recognition of Bitcoin Mixed Coin Transactions  Based on ResGCN

Qiu Yudie, Tang Yanjun, Dai Xilai, and Wang Zichen   

  1. (School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Shenyang 110854)
  • Online:2025-07-29 Published:2025-07-29

摘要: 比特币以其去中心化的点对点匿名性质而受到关注,但其伪匿名性使得交易仍可追踪,为满足用户对隐私的更高要求,混币交易应运而生.然而,混币交易使得比特币资金追踪变得更加困难,同时也成了协助犯罪分子非法洗钱的帮凶.为了预防和打击洗钱等金融犯罪,提出了一种基于图神经网络的比特币混币交易地址识别方法.首先构建了数量丰富且具有代表性的标签地址数据集;其次通过添加残差连接构建残差图卷积网络(ResGCN)进行图特征学习与嵌入,克服了传统图卷积网络(GCN)随着图卷积层数增加而出现的梯度衰减问题;接着将自注意力机制与多层感知器相结合进行图分类;最后输出二分类结果.实验结果表明,该方法能够较为准确地识别混币交易地址.

关键词: 比特币, 混币, 交易地址, 残差图卷积网络, 自注意力机制, 多层感知器

Abstract: Bitcoin has received attention for its decentralized peertopeer anonymity nature, but its pseudoanonymity makes the transaction still traceable. In order to meet the higher requirements of users for privacy, mixedcoin transactions came into being. However, mixedcoin transactions make it more difficult to trace the funds of bitcoin, and at the same time, it also becomes an accomplice in assisting criminals to illegally launder money. In order to prevent and combat money laundering and other financial crimes, this paper proposes a graph neural networkbased address recognition method for bitcoin mixedcoin transactions. Firstly, a rich and representative labeled address dataset is constructed; secondly, a residual graph convolution network ResGCN is constructed by adding residual connections for graph feature learning and embedding, which overcomes the gradient decay problem of the traditional graph convolution network GCN with the increase of the number of graph convolution layers; and then the selfattention mechanism is combined with the multilayer perceptron MLP for graph classification; and finally output the binary classification results. The experimental results show that the method in this paper can accurately recognize the mixedcoin transaction addresses.

Key words: bitcoin, mixed coin, transaction address, ResGCN, selfattention, MLP

中图分类号: