[1]Ponemon Institute. 2022 ponemon cost of insider threats global report[ROL]. 2022 [20241203]. https:www.proofpoint.comusresourcesthreatreportscostofinsiderthreats[2]Verizon Communications Inc. 2024 data breach investigations report: Half of the breaches in EMEA are internal[ROL]. 2024 [20241204]. https:www.verizon.comaboutnews2024databreachinvestigationsreportemea[3]Cybersecurity Insiders, Gurucul. 2024 insider threat report[ROL]. 2024 [20241204]. https:gurucul.com2024insiderthreatreport[4]Goodfellow I, PougetAbadie J, Mirza M, et al. Generative adversarial nets[J]. Advances in Neural Information Processing Systems, 2014, 27: 26722680[5]Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier GANs[C] Proc of the Int Conf on Machine Learning (ICML). New York: PMLR, 2017: 26422651[6]Zerveas G, Jayaraman S, Patel D, et al. A transformerbased framework for multivariate time series representation learning[C] Proc of the 27th ACM SIGKDD Conf on Knowledge Discovery & Data Mining (KDD’21). New York: ACM, 2021: 21142124[7]黄娜, 何泾沙, 吴亚飚, 等. 基于LSTM回归模型的内部威胁检测方法[J]. 信息网络安全, 2020, 20(9): 1721[8]张光华, 闫风如, 张冬雯, 等. 基于LSTMAttention的内部威胁检测模型[J]. 信息网络安全, 2022, 22(2): 110[9]Wei Yichen, Chow K P P, Yiu Siu Ming. Insider threat prediction based on unsupervised anomaly detection scheme for proactive forensic investigation[J]. Forensic Science International: Digital Investigation, 2021, 38: 301126[10]冯冠云, 付才, 吕建强, 等. 基于操作注意力和数据增强的内部威胁检测[J]. 网络与信息安全学报, 2023, 9(3): 102112[11]Gayathri R G, Sajjanhar A, Xiang Yong. Hybrid deep learning model using SPCAGAN augmentation for insider threat analysis[J]. Expert Systems with Applications, 2024, 249: 123533[12]Randive K, Mohan R, Sivakrishna A M. An efficient patternbased approach for insider threat classification using the imagebased feature representation[J]. Journal of Information Security and Applications, 2023, 73: 103434[13]Wiese M, Knobloch R, Korn R, et al. Quant GANs: Deep generation of financial time series[J]. Quantitative Finance, 2020, 20(9): 14191440[14]Yoon J, Jarrett D, Van der Schaar M. Timeseries generative adversarial networks[C] Advances in Neural Information Processing Systems (NeurIPS). Red Hook, NY: Curran Associates, Inc., 2019: 55055515[15]Zhang Guoling, Wang Xiaodan, Li Rui, et al. Network intrusion detection based on conditional Wasserstein generative adversarial network and costsensitive stacked autoencoder[J]. IEEE Access, 2020, 8: 190431190447[16]王子昂, 汤艳君, 王子晨, 等. 基于去噪扩散概率模型的网络流量入侵检测方法研究[J]. 信息安全研究, 2024, 10(5): 421430[17]Pratik C, Wang Lipo, Yang Pengtan. Scenariobased insider threat detection from cyber activities[J]. IEEE Trans on Computational Social Systems, 2018, 5(3): 660675[18]张晨路. 基于GSMOTE和BiasedSVM的内部威胁用户检测[J]. 中北大学学报: 自然科学版, 2022, 43(2): 147152 |