[1]Ma Q, Sun C, Cui B J, et al. A novel model for anomaly detection in network traffic based on kernel support vector machine[J]. Computers & Security, 2021, 104(2): 102215[2]Ucci D, Sobrero F, Bisio F, et al. Nearrealtime anomaly detection in encrypted traffic using machine learning techniques[C] Proc of the 2021 IEEE Symposium Series on Computational Intelligence. Piscataway, NJ: IEEE, 2021: 18[3]Mohammadi M, Rashid T A, Karim S H T, et al.A comprehensive survey and taxonomy of the SVMbased intrusion detection systems[J]. Journal of Network and Computer Applications, 2021, 178(4): 102983[4]Charbuty B, Abdulazeez A. Classification based on decision tree algorithm for machine learning[J]. Journal of Applied Science and Technology Trends, 2021, 2(1): 2028[5]Ramadhan I, Sukarno P, Nugroho M A.Comparative analysis of Knearest neighbor and decision tree in detecting distributed denial of service[C] Proc of the 8th Int Conf on Information and Communication Technology. Piscataway, NJ: IEEE, 2020: 14[6]Arowolo M O, Adebiyi M, Adebiyi A, et al. PCA model for RNASeq malaria vector data classification using KNN and decision tree algorithm[C] Proc of the 2020 Int Conf in Mathematics, Computer Engineering and Computer Science. Piscataway, NJ: IEEE, 2020: 18[7]Canavese D, Regano L, Basile C, et al. EncryptionAgnostic classifiers of traffic originators and their application to anomaly detection[J]. Computers & Electrical Engineering, 2022, 97(C): 107621[8]Marteau P F. Random partitioning forest for pointwise and collective anomaly detection—application to network intrusion detection[J]. IEEE Trans on Information Forensics and Security, 2021, 16(1): 21572172[9]Wang M, Lu Y Q, Qin J C. A dynamic MLPbased DDoS attack detection method using feature selection and feedback[J]. Computers & Security, 2020, 88(C): 101645[10]Alqurashi S, Shirazi H, Ray I. On the performance of isolation forest and multi layer perceptron for anomaly detection in industrial control systems networks[C] Proc of the 8th Int Conf on Internet of Things: Systems, Management and Security. Piscataway, NJ: IEEE, 2021: 16[11]Song J Y, Paul R, Yun J H, et al. CNNbased anomaly detection for packet payloads of industrial control system[J]. International Journal of Sensor Networks, 2021, 36(1): 3649[12]Nam S, Lim J, Yoo J H, et al. Network anomaly detection based on inband network telemetry with RNN[C] Proc of the 2020 IEEE Int Conf on Consumer ElectronicsAsia. Piscataway, NJ: IEEE, 2020: 14[13]Perozzi B, AlRfou R, Skiena S. DeepWalk: Online learning of social representations[C] Proc of the the 20th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701710[14]Tang J, Qu M, Wang M Z, et al. LINE: Largescale information network embedding[C] Proc of the 24th Int Conf on World Wide Web. New York: ACM, 2015: 10671077[15]Ribeiro L F R, Saverese P H P, Figueiredo D R. struc2vec: Learning node representations from structural identity[C] Proc of the 23rd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2017: 385394[16]Wang M J, Zheng D, Ye Z H, et al. Deep graph library: A graphcentric, highlyperformant package for graph neural networks[J]. arXiv preprint, arXiv:1909.01315, 2019[17]林永君, 张世成, 杨凯, 等. 基于时钟循环神经网络的光伏故障诊断[J]. 山东电力技术, 2024, 51(1): 5258, 76[18]陈晓华, 吴杰康, 龙泳丞, 等. 基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测[J]. 山东电力技术, 2024, 51(1): 5967[19]赵中华, 张绪辉, 王太, 等. 基于EABC算法优化RFR模型的电力行业碳排放量预测[J]. 山东电力技术, 2024, 51(1): 7784[20]辛冉, 高深, 阮博男. 5G核心网网元服务异常检测[J]. 信息通信技术与政策, 2021, (11): 8996[21]Lam J, Abbas R. Machinelearning based anomaly detection for 5G networks[J]. arXiv preprint, arXiv:2003.03474, 2003[22]Mustaqim A Z, Adi S, Pristyanto Y, et al. The effect of recursive feature elimination with crossvalidation (RFECV) feature selection algorithm toward classifier performance on credit card fraud detection[C] Proc of 2021 Int Conf on Artificial Intelligence and Computer Science Technology (ICAICST). Yogyakarta, Indonesia, 2021:. 270275[23]Wu Z H, Pan S R, Chen F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Trans on Neural Networks and Learning Systems, 2021, 32(1): 424[24]韦强申, 宋勇, 李红霞, 等. 5G核心网网元多维特征融合故障预警[J]. 通信技术, 2022, 55(3): 394403[25]Hu N, Tian Z H, Lu H, et al. A multiplekernel clustering based intrusion detection scheme for 5G and IoT Networks[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(11): 31293144[26]Sedjelmaci H. Cooperative attacks detection based on artificial intelligence system for 5G networks[J]. Computers & Electrical Engineering, 2021, 91(11): 107045[27]Hu X X, Liu C X, Liu S X, et al.Signaling security analysis: Is HTTP2 secure in 5G core network?[C] Proc of the 2018 10th Int Conf on Wireless Communications and Signal Processing. Piscataway, NJ: IEEE, 2018: 16[28]Tripathi N, Hubballi N. Slow rate denial of service attacks against HTTP2 and detection[J]. Computers & Security, 2018, 72(C): 255272
|