[1]Ovabor K, Kelvin, et al. AIdriven threat intelligence for realtime cybersecurity: Frameworks, tools, and future directions[J]. Open Access Research Journal of Science and Technology, 2024, 12(2): 4048[2] 管延霞, 刘逊韵, 刘运韬, 等. 面向多智能体博弈的并行蒙特卡洛树搜索算法研究[J]. 计算机工程与科学, 2022, 44(12): 21282133[3]Wang X, et al. Model context protocol (MCP): Landscape, security threats, and future research directions[EBOL]. 2025 [20250721]. https:xueshu.baidu.comusercenterpapershow?paperid=177j0rt0q82x0010p47p0pj0gr698628 &site=xueshu_se[4] Li Q, et al. Innes: An intelligent network penetration testing model based on deep reinforcement learning[J]. Applied Intelligence, 2023, 53(22): 2711027127[5]王安琪, 杨蓓, 张建辉, 等. SQL注入攻击检测与防御技术研究综述[J]. 信息安全研究, 2023, 9(5): 412422[6]Get started with the model context protocol (MCP)[EBOL]. 2025 [20250721]. https:modelcontextprotocol.iointroduction[7]Yao Huanjin, Huang Jiaxing, Wu Wenhao, et al. Mulberry: Empowering mllm with o1like reasoning and reflection via collective monte carlo tree search[EBOL]. 2024 [20250721]. https:xueshu.baidu.comusercenterpapershow?paperid=1j6v0gy0bk7r0vc0un0k0x30ex27319 7&site=xueshu_se[8]王永, 柳毅. 一种多模型的调度优化对抗攻击算法[J]. 信息安全研究, 2024, 10(5): 403410[9]Xie Yuxi, Goyal Anirudh, Zheng Wenyue, et al. Goyal a. Monte carlo tree search boosts reasoning[10]梁超, 王子博, 张耀方, 等. 基于知识图谱推理的工控漏洞利用关系预测方法[J]. 信息安全研究, 2024, 10(6): 498505 |