[1]刘凯俊, 张晓梅, 钱秀槟. 基于等级保护的工业控制系统分类分级方法[J]. 信息安全与通信保密, 2015 (5): 112116[2]夏春明, 刘涛, 王华忠, 等. 工业控制系统信息安全现状及发展趋势[J]. 信息安全与技术, 2013, 4(2): 1318[3]陈庄, 黄勇, 邹航. 工业控制系统信息安全审计系统分析与设计[J]. 计算机科学, 2013, 40(Z1): 340343[4]丛航, 孙晰, 欧阳劲松. 基于Modbus协议的工业自动化网络规范——基于串行链路和TCPIP的Modbus应用协议[J]. 仪器仪表标准化与计量, 2003 (1): 1417[5]Morris T, Gao W. Industrial control system traffic data sets for intrusion detection research[C] Proc of Int Conf on Critical Infrastructure Protection. Berlin: Springer, 2014: 6578[6]彭勇, 江常青, 等. 工业控制系统信息安全研究进展[C] 第5届信息安全漏洞分析与风险评估大会论文集. 上海: 中国信息安全测评中心, 2014[7]张云贵, 张伟, 薛向荣, 等. 基于自学习半监督单类支持向量机的SCADA入侵检测系统[J]. 冶金自动化, 2013, 37(2): 15[8]Beaver J M, BorgesHink R C, BucknerM A. An evaluation of machine learning methods to detect malicious SCADA communications[C] Proc of Int Conf on Machine Learning and Applications. Piscataway, NJ: IEEE, 2013: 5459[9]Maglaras L A, Jiang J, Cruz T. Integrated OCSVM mechanism for intrusion detection in SCADA systems [J]. IEEE Electronics Letters, 2014, 50(25): 19351936[10]Linda O, Vollmer T, Manic M. Neural network based intrusion detection system for critical infrastructures[C]Proc of IJCNN 2009. Piscataway, NJ: IEEE, 2009: 102109[11]Almalawi A, Tari Z, Khalila I, et al. An unsupervised anomalybased detection approach for integrity attcks on SCADA systems[J]. Computers & Security, 2014, 46(10): 94110[12]Almalawi A, Fahad A, Tari Z, et al. An efficient datadriven clustering technique to detect attacks in SCADA systems[J]. IEEE Trans on Information Forensics and Security, 2016, 11(5): 893906
|