[1] 蒋华, 刘勇, 王鑫. 基于控制流的代码混淆技术研究[D]. 2013
[2] 张宇嘉, 张啸川, 庞建民. 代码混淆技术研究综述[J]. 信息工程大学学报, 2017, 18(5): 635-640
[3] Firdausi I, Erwin A, Nugroho A S. Analysis of machine learning techniques used in behavior-based malware detection[C] // Proc of the 2nd Int Conf on Advances in Computing, Control and Telecommunication Technologies (ACT).Piscataway,NJ: IEEE, 2010: 201-203
[4] Seshardi V, Ramzan Z, Satish S, et al. Using machine infection characteristics for behavior-based detection of malware: US Patent 8,266,698[P]. 2012-09-11
[5] 韩兰胜, 高昆仑, 赵保华, 等. 基于 API 函数及其参数相结合的恶意软件行为检测[D]. 2013.
[6] 荣俸萍, 方勇, 左政, 等. MACSPMD: 基于恶意 API 调用序列模式挖掘的恶意代码检测[J]. 计算机科学, 2018,45 (5): 132-138
[7] 李盟, 贾晓启, 王蕊, 等. 一种恶意代码特征选取和建模方法[J]. 计算机应用与软件, 2015, 32(8), 266-267
[8] Cho I K, Kim T G, Shim Y J, et al. Malware Similarity Analysis using API Sequence Alignments[J]. J. Internet Serv. Inf. Secur., 2014, 4(4): 103-114
[9] Ki Y, Kim E, Kim H K. A novel approach to detect malware based on API call sequence analysis[J]. International Journal of Distributed Sensor Networks, 2015, 11(6): 659101
[10] Kostakis O, Kinable J, Mahmoudi H, et al. Improved call graph comparison using simulated annealing[C]//Proc of the 2011 ACM Symp on Applied Computing.New York: ACM, 2011: 1516-1523
[11] Shang Shanhu, Zheng Ning, Xu Jian, et al. Detecting malware variants via function-call graph similarity[C]// Proc of the 5th Int Conf on Malicious and Unwanted Software (MALWARE). Piscataway,NJ:IEEE, 2010: 113-120
[12] Sirageldin A, Baharudin B, Jung L T. Detecting malicious executable file via graph comparison using support vector machine[C]//Proc of Int Conf on Computer & Information Science (ICCIS). Piscataway,NJ:IEEE, 2012: 469-473
[13] Nikolopoulos S D, Polenakis I. A graph-based model for malware detection and classification using system-call groups[J]. Journal of Computer Virology and Hacking Techniques, 2017, 13(1): 29-46
[14] Elhadi A A E, Maarof M A, Barry B I A, et al. Enhancing the detection of metamorphic malware using call graphs[J]. Computers & Security, 2014, 46: 62-78
[15] Song D, Brumley D, Yin H, et al. BitBlaze: A new approach to computer security via binary analysis[C]//Proc of Int Conf on Information Systems Security. Berlin: Springer, 2008: 1-25
[16] Liaw A, Wiener M. Classification and regression by randomForest[J]. R news, 2002, 2(3): 18-22
[17] Kolbitsch C, Comparetti P M, Kruegel C, et al. Effective and Efficient Malware Detection at the End Host[C]//Proc of USENIX Security Symp. Berkeley: USENIX Association,2009: 351-366
|