1] Av-Test.New malware[EB/OL].[ 2019-11-10].https://www.av-test.org/en/statistics/malware
[2] Symantec.The future of mobile malware[EB/OL]. [2019-11-10]. http://www.symantec.com/connect/blogs/future-mobile-malware
[3] Rafique M Z, Chen P, Huygens C, et al. Evolutionary algorithms for classification of malware families through different network behaviors[C]//Proc of the 2014 Annual Conf on Genetic and Evolutionary Computation. New York: ACM, 2014: 1167-1174
[4] Avast.Avast reports on WanaCrypt0r 2.0 ransomware that infected NHS and telefonica[EB/OL].[2019-11-10].https://blog.avast.com/ransomware-that-infected-telefonica-and-nhs-hospitals-isspreading-aggressively-withover-50000-attacks-so-far-today
[5] Damodaran A, Di Troia F, Visaggio C A, et al. A comparison of static, dynamic, and hybrid analysis for malware detection[J]. Journal of Computer Virology and Hacking Techniques, 2017, 13(1): 1-12
[6] Bat-Erdene M, Park H, Li H, et al. Entropy analysis to classify unknown packing algorithms for malware detection[J]. International Journal of Information Security, 2017, 16(3): 227-248
[7] Santos I, Brezo F, Ugarte-Pedrero X, et al. Opcode sequences as representation of executables for data-mining-based unknown malware detection[J]. Information Sciences, 2013, 231: 64-82
[8] Fattori A, Lanzi A, Balzarotti D, et al. Hypervisor-based malware protection with accessminer[J]. Computers & Security, 2015, 52: 33-50
[9] Altaher A. An improved Android malware detection scheme based on an evolving hybrid neuro-fuzzy classifier (EHNFC) and permission-based features[J]. Neural Computing and Applications, 2017, 28(12): 4147-4157
[10] Fan C I, Hsiao H W, Chou C H, et al. Malware detection systems based on API log data mining[C]//Proc of the 39th IEEE 39th Annual Computer Software and Applications Conf. Piscataway, NJ: IEEE, 2015: 255-260
[11] Lee T, Choi B, Shin Y, et al. Automatic malware mutant detection and group classification based on the n-gram and clustering coefficient[J]. The Journal of Supercomputing, 2018, 74(8): 3489-3503
[12] 荣俸萍, 方勇, 左政, 等. MACSPMD: 基于恶意 API 调用序列模式挖掘的恶意代码检测[J]. 计算机科学, 2018, 45(5): 131-138
[13] Wüchner T, Ochoa M, Pretschner A. Malware detection with quantitative data flow graphs[C]//Proc of the 9th ACM Symp on Information, Computer and Communications Security. New York: ACM, 2014: 271-282
[14] Hassen M, Chan P K. Scalable function call graph-based malware classification[C]//Proc of the 7th ACM on Conf on Data and Application Security and Privacy. New York: ACM, 2017: 239-248
[15] Searles R, Xu L, Killian W, et al. Parallelization of machine learning applied to call graphs of binaries for malware detection[C]// Proc of the 25th Euromicro Int Conf on Parallel, Distributed and Network-based Processing (PDP). Piscataway, NJ: IEEE, 2017: 69-77
[16] 赵炳麟, 孟曦, 韩金, 等. 基于图结构的恶意代码同源性分析[J]. 通信学报, 2017, 38(Z2): 86-93
[17] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint, arXiv:1609.02907, 2016
[18] Zhu R, Li C, Niu D, et al. Android malware detection using large-scale network representation learning[J]. arXiv preprint, arXiv:1806.04847, 2018
[19] Yan J, Yan G, Jin D. Classifying Malware Represented as Control Flow Graphs using Deep Graph Convolutional Neural Network[C]//Proc of the 49th Annual IEEE/IFIP Int Conf on Dependable Systems and Networks (DSN). Piscataway, NJ: IEEE, 2019: 52-63
[20] Gilmer J, Schoenholz S S, Riley P F, et al. Neural message passing for quantum chemistry[C]//Proc of the 34th Int Conf on Machine Learning. Brooklyn: JMLR. org, 2017: 1263-1272
[21] Catak F O, Yazı A F. A benchmark API call dataset for Windows PE malware classification[J]. arXiv preprint, arXiv:1905.01999, 2019
[22] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2017: 1024-1034
[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2017: 5998-6008
[24] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint, arXiv:1301.3781, 2013
|