[1]Vinayakumar R, Kp S, Poornachandran P. Evaluating effectiveness of shallow and deep networks to intrusion detection system[C] Proc of the 2017 Int Conf on Advances in Computing,Communications and Informatics. Berlin: Springer, 2018: 12821289[2]Debarn H, Dacier M, Wespi A. Towards a taxonomy of intrusiondetection systems[J].Computer Networks, 1999, 31(8): 805822[3]GarciaTeodoro P, DiazVerdejo J, MaciaFernandez G, et al. Anomalybased network intrusion detection: Techniques, systems and challenges[J]. Computers & Security, 2009, 28(12): 1828[4]Moustafa N, Slay J. UNSWNB15: A comprehensive data set for network intrusion detection systems (UNSWNB15 network dataset)[C] Proc of the 2015 Military Communications and Information Systems Conf. Piscataway, NJ: IEEE, 2015: 16[5]Vinayakumar R, Kp S, Poornachandran P. Applying convolutional neural network for network intrusion detection[C] Proc of the 2017 Int Conf on Advances in Computing, Communications and Informatics. Berlin: Springer, 2017: 12221228[6]Mirsky Y, Doitshman T, Elovici Y, et al. Kitsune: An ensemble of autoencoders for online network intrusion detection[J]. arXiv preprint, arXiv:1802.09089, 2018[7]黄屿璁, 张潮, 吕鑫, 等. 基于深度学习的网络入侵检测研究综述[J]. 信息安全研究, 2022, 8(12): 11631177[8]Delplace A, Hermoso S, Anandita K. Cyber attack detection thanks to machine learning algorithms[J]. arXiv preprint, arXiv:2001.06309, 2020[9]Yang L, Shami A, Stevens G, et al. LCCDE: A decisionbased ensemble framework for intrusion detection in the internet of vehicles[C] Proc of the 2022 IEEE Global Communications Conf. Piscataway, NJ: IEEE, 2022: 35453550[10]Timcenko V, Gajin S. Ensemble classifiers for supervised anomaly based network intrusion detection[C] Proc of the 13th IEEE Int Conf on Intelligent Computer Communication and Processing. Piscataway, NJ: IEEE, 2017: 1319[11]莫坤, 王娜, 李恒吉, 等. 基于LightGBM的网络入侵检测系统[J].信息安全研究, 2019, 5(2): 152156[12]Chen. Convolutional neural network for sentence classification[D]. Waterloo, Canada: University of Waterloo, 2015[13]Chen T, Guestrin C. XGBoost: A scalable tree boosting system[C] Proc of the 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Minning. New York: ACM, 2016: 785794[14]Ke Guolin, Meng Qi, Finley T, et al. LightGBM: A highly efficient gradient boosting decision tree[C] Proc of the 31st Int Conf on Neural Information Processing Systems. New York: ACM, 2017: 19 |