[1]Mcmahan H B, Eider M, Daniel R, et al. Communicationefficient learning of deep networks from decentralized data[C] Proc of the 20th Int Conf on Artificial Intelligence and Statistics. New York: PMLR, 2017: 12731282[2]Luca M, Song Congzheng, Emiliano D C, et al. Exploiting unintended feature leakage in collaborative learning[C] Proc of the IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 2019: 691706[3]Zhu Ligeng, Liu Zhijian, Han Song. Deep leakage from gradients[C] Proc of Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2019: 1477414784[4]Briland H, Giuseppe A, Fernando P. Deep models under the GAN: Information leakage from collaborative deep learning[C] Proc of the 2017 ACM SIGSAC Conf on Computer and Communications Security. New York: ACM, 2017: 603618[5]Yoshinori A, Takuya H, Wang Lihua, et al. Privacypreserving deep learning via additively homomorphic encryption[J]. IEEE Trans on Information Forensics and Security, 2017,13(5):13331345[6]Zhang Xianglong, Fu Anmin, Wang Huaqun, et al. A privacypreserving and verifiable federated learning scheme[C] Proc of the 7th IEEE Int Conf on Communications. Piscataway, NJ: IEEE, 2020: 16[7]Mcmahan B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[C] Proc of the 20th Int Conf on Artificial Intelligence and Statistics. New York: PMLR, 2017: 12731282[8]Phong L T, Aono Y, Hayashi T, et al. Privacypreserving deep learning via additively homomorphic encryption[J]. IEEE Trans on Information Forensics and Security,2018,13(5): 13331345[9]刘晓迁, 许飞, 马卓. 联邦学习中的隐私保护技术研究[J]. 信息安全研究, 2024, 10(3): 194201[10]赖成喆, 赵益宁, 郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全, 2024, 24(1): 93105[11]Andreas P, Erik T, Stefan K. Efficiently outsourcing multiparty computation under multiple keys[J]. IEEE Trans on Information Forensics and Security, 2013, 8(12): 20462058[12]Zhang Qian, Jing Shan, Zhao Chuan, et al. Efficient federated learning framework based on multikey homomorphic encryption[C] Proc of the 17th Int Con on P2P, Parallel, Grid, Cloud and Internet Computing. Berlin: Springer ,2022: 88105[13]Jiang Lin, Guo Hui, Pan Yijian, et al. Secure neural network in federated learning with model aggregation under multiple keys[C] Proc of the 8th IEEE Int Con on Cyber Security and Cloud Computing. Piscataway, NJ: IEEE, 2021: 4752[14]Ma Jing, SiAhmed N, Stephan S, et al. Privacypreserving federated learning based on multikey homomorphic encryption[J]. Computing Research Repository, 2022, 37(9): 58805901[15]Chen Hao, Dai Wei, Miran K, et al. Efficient multikey homomorphic encryption with packed ciphertexts with application to oblivious neural network inference[C] Proc of the 2019 ACM SIGSAC Conf. New York: ACM, 2019: 395412[16]Li Yiran, Li Hongwei, Xu Guowen, et al. EPPS: Efficient privacypreserving scheme in distributed deep learning[C] Proc of the Global Communications Conference. Piscataway, NJ: IEEE, 2019: 16[17]Ivan B D, Jurik M. A generalisation, a simplification and some applications of paillier’s probabilistic publickey system[C] Proc of the 4th Int Workshop on Practice and Theory. 2001: 119136[18]Ku Hanchao, Willy S, Zhang Yudi, et al. Privacypreserving federated learning in medical diagnosis with homomorphic reencryption[J], Computer Standards & Interfaces, 2022, 80: 103907103916[19]Sun Yipeng, Yang Yuexiang. Gradient privacypreserving in federated learning via proxy reencryption[C] Proc of the 5th Int Con on Information Science and Systems. Piscataway, NJ: IEEE, 2022: 100106[20]Li Yanling, Lai Junzuo, Zhang Rong, et al. Secure and efficient multikey aggregation for federated learning[J]. Information Sciences, 2024, 654: 119830119848[21]Hossein S, Anwar H, Lukas B, et al. Secure sharing of partially homomorphic encrypted IoT data[C] Proc of the ACM Int Con on Embedded Networked Sensor Systems. New York: ACM, 2017: 114
|