[1]Tay Y, Dehghani M, Bahri D, et al. Efficient transformers: A survey[J]. ACM Computing Surveys, 2022, 55(6): 109[2]Goertzel B. Artificial general intelligence: Concept, state of the art,and future prospects[J]. Journal of Artificial General Intelligence, 2014, 5(1): 148[3]Arp D, Quiring E, Pendlebury F, et al. Dos and don’ts of machine learning in computer security[C]Proc of the 31st USENIX Security Symposium (USENIX Security 22). Berkeley, CA: USENIX Association, 2022: 39713988[4]Kolias C, Kambourakis G, Stavrou A, et al. Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset[J]. IEEE Communications Surveys & Tutorials, 2016, 18(1): 184208[5]Santanna J J, RijswijkDeij R V, Hofstede R, et al. Booters—An analysis of DDoSasaservice attacks[C] Proc of the 2015 IFIPIEEE Int Symp on Integrated Network Management(IM). Piscataway, NJ: IEEE, 2015: 243251[6]Jazi H H, Gonzalez H, Stakhanova N, et al. Detecting HTTPbased application layer DoS attacks on web servers in thepresence of sampling[J]. Computer Networks, 2017, 121: 2536[7]Sharafaldin I, Lashkari A H, Chorbani A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C] Proc of the 4th Int Conf on Information Systems Security and Privacy. 2018: 108116[8]Ring M, Wunderlich S, Griidl D, et al. Flowbased bench18]mark data sets for intrusion detection[C] Proc of the 16th European Conf on Cyber Warfare and Security. 2017: 361369[9]Ring M, Wunderlich S, Griidl D, et al. Creation of flowbased data sets for intrusion detection[J]. Journal of Information Warfare, 2017, 16(4): 4154[10]Garcia S, Grill M, Stiborek J, et al. An empirical comparison of botnet detection methods[J]. Computers & Security, 2014, 45: 100123[11]Lippmann R P, Fried D J, Graf I, et al. Evaluating intrusion detection systems: The 1998 DARPA off in intrusion detection evaluation[C] DARPA Information Survivability Conference and Exposition. 2000: 1226[12]Lippmann R, Haines J W, Fried D J, et al. The 1999 DARPA offine intrusion detection evaluation[J]. Computer Networks, 2000, 34(4): 579595[13]Alkasassbeh M, AlNaymat G, Hassanat A B, et al. Detecting distributed denial of service attacks using data mining techniques[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(1): 436445[14]Zuech R, Khoshgoftaar T M, Seliya N, et al. A new intrusion detection bench marking system[C] Proc of the 28th Int Florida Artificial Intelligence Research Society(FLAIRS 2015). 2015: 252255[15]Shiravi A, Shiravi H, Tavallaee M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers & Security, 2012, 31(3): 357374[16]Saad S, Traore I, Ghorbani A, et al. Detecting P2P botnets through network behavior analysis and machine learning[C] Proc of the 9th Annual Int Conf on Privacy; Security and Trust. 2011: 174180[17]Stolfo S J. KDD CUP 1999 dataset[D]. Irvine: University of California,1999[18]Sharma R, Singla R K, Guleria A. A new labeled flowbased DNS dataset for anomaly detection: PUF dataset[J]. Procedia Computer Science, 2018, 132: 14581466[19]Moustafa N, Slay J. UNSWNB15: A comprehensive dataset for network intrusion detection systems (UNSWNB15 network data set[C] Proc of 2015 Military Communications and Information Systems Conference(MilCIS). 2015: 16[20]Beigi E B, Jazi H H, Stakhanova N, et al. Towards effective feature selection in machine learning botnet detection approaches[C] Proc of 2014 IEEE Conf on Communications and Network Security. Piscataway, NJ: IEEE, 2014: 247255[21]Liu Y, Li S, Fang J, et al. Colossalauto: Unified automation of parallelization and activation checkpoint for largescale models[J].arXiv preprint, arXiv:2302.02599, 2023[22]Hu E J, Shen Y, Wallis P, et al. Lora: Lowrank adaptation of large language models[J].arXiv preprint, arXiv:2106.09685, 2021[23]Lester B, AlRfou R, Constant N. The power of scale for parameterefficient prompt tuning[J].arXiv preprint, arXiv:2104.08691, 2021 [24]Li X L, Liang P. Prefixtuning: Optimizing continuous prompts for generation[J].arXiv preprint, arXiv:2101.00190, 2021[25]Liu X, Ji K, Fu Y, et al. Ptuning v2: Prompt tuning can be comparable to finetuning universally across scales and tasks[J].arXiv preprint, arXiv:2110.07602, 2021[26]Sousa A L, Véstias M P, Neto H C. Multimodel inference accelerator for binary convolutional neural networks[J]. Electronics, 2022, 11(23): 3966
|