Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (11): 1008-.

Previous Articles     Next Articles

Highorder Program Driven by Large Language Model

Wei Tao, Zhong Zhenyu, Liu Yan, Chen Da, Xue Jianxin, Hu Yuelin, Yu Chaofan, and Zhou Yunhao#br#

#br#
  

  1. (Ant Group, Hangzhou 310023)
  • Online:2025-11-27 Published:2025-11-27

大模型驱动的高阶程序

韦韬仲震宇刘焱陈达薛见新胡钺琳余超凡周云浩   

  1. (蚂蚁集团杭州310023)
  • 通讯作者: 韦韬 博士,正高级工程师,蚂蚁集团副总裁兼首席技术安全官,北京大学客座教授.致力于让各种复杂系统变得更加安全可靠,多项成果帮助各主流操作系统提升安全性,领导并推动了多个知名开源安全软件的发展. lenx.wei@antgroup.com
  • 作者简介:韦韬 博士,正高级工程师,蚂蚁集团副总裁兼首席技术安全官,北京大学客座教授.致力于让各种复杂系统变得更加安全可靠,多项成果帮助各主流操作系统提升安全性,领导并推动了多个知名开源安全软件的发展. lenx.wei@antgroup.com 仲震宇 博士,正高级工程师.主要研究方向为人工智能安全、大语言模型原生安全、安全对齐、网络安全、系统安全、应用安全. edward.zhong@antgroup.com 刘焱 工程师.主要研究方向为数据安全、AI安全. bencao.ly@antgroup.com 陈达 主要研究方向为大模型垂直领域可信安全和AI安全. xiawei.cd@antgroup.com 薛见新 博士.主要研究方向为可信大模型与安全运营. xuejianxin.xjx@antgroup.com 胡钺琳 硕士.主要研究方向为大模型在安全领域的应用、大模型的可信安全. huyuelin.hyl@antgroup.com 余超凡 硕士.主要研究方向为隐语密态引擎、隐私保护大模型. shuyan.ycf@antgroup.com 周云浩 硕士.主要研究方向为大模型在数据流通中的智能化应用. zhouyunhao.zyh@antgroup.com

Abstract: Large language models (LLMs) often exhibit hallucinations in various occasions, leading to unreliable inferences. Such vulnerabilities render it  critical for LLMs to be adopted cautiously in vertical domains such as financial, medical, and cybersecurity domains. In preLLM era, humans have accumulated the best practices to ensure reliabilities of complicated tasks through careful engineering. Standard operating procedures (SOP) and Check List are the exemplars of these best practices. Likewise, in LLM era, we propose highorder program (HOP)to achieve the reliability breakthroughs. By fusing both accurate execution of traditional programing languages, and superior knowledge intrinsics of LLMs, HOP sets the backbone of the control system required by vertical LLM applications. HOP achieves automations by leveraging key vertical knowledge and practices. More importantly, it delivers expected reliability through verifications. HOP itself can be autogenerated by LLMs, which further incentivizes its wide adoptions. Lately, we have applied HOP in different scenarios including fulllifecycle financial risk management in cryptographic computing settings, duplicate charges in medical diagnosis, and intrusion detection. HOP has achieved 5 to 10 folds of efficiency improvement, and an accuracy as good as 99% across aforementioned scenarios.

Key words: LLM, highorder program, verification, reliability, hallucination

摘要: 大模型因幻觉导致可靠性不足,难以满足专业领域(如金融、医疗、网络安全等)对精确性和可靠性的严苛要求.在传统专业领域,人类已经积累了大量的经验通过工程化的最佳实践实现高可靠性.这些最佳实践包括标准作业程序(standard operating procedure, SOP)和检查清单等机制.同样地,在大模型时代,首次提出大模型需借助高阶程序(highorder program, HOP)突破可靠性瓶颈.具体来说,HOP设计了一套新颖的任务融合描述与执行的语言,结合程序语言的精确执行能力与自然语言的知识表达优势,承载了专业领域的关键知识和实践并将其自动化.更重要的是其核验机制,补齐了当前大模型执行不验证的短板,保障了可靠性.在实践层面,HOP已经证明了其作为大模型行业应用急需且必须的控制体系的重大意义:HOP已经在密算金融风控全链路、网络入侵检测、医疗重复计费等多行业场景中初步应用,其时效性有显著提升(5~10倍),可靠性准确率均可达到99%.

关键词: 大模型, 高阶程序, 核验, 可靠性, 幻觉

CLC Number: