Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (3): 205-.

Previous Articles     Next Articles

A Federated Learning Method Resistant to Label Flip Attack

Zhou Jingxian1, Han Wei1, Zhang Dedong2, and Li Zhiping1   

  1. 1(School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300)
    2(Institute of Electronic Computing Technology, China Academy of Railway Sciences Group Co., Ltd., Beijing 100081)
  • Online:2025-03-18 Published:2025-03-30

一种抗标签翻转攻击的联邦学习方法

周景贤1韩威1张德栋2李志平1   

  1. 1(中国民航大学计算机科学与技术学院天津300300)
    2(中国铁道科学研究院集团有限公司电子计算技术研究所北京100081)
  • 通讯作者: 韩威 硕士研究生.主要研究方向为联邦学习、网络安全. 89503906@qq.com
  • 作者简介:周景贤 博士,副研究员.主要研究方向为数据安全、民航信息系统安全. jxzhou@cauc.edu.cn 韩威 硕士研究生.主要研究方向为联邦学习、网络安全. 89503906@qq.com 张德栋 博士,高级工程师.主要研究方向为网络安全、计算机应用技术. zhangdedong@rails.cn 李志平 硕士,实验师.主要研究方向为网络与信息安全. 18322731101@126.com

Abstract: Since users participating in federated learning training have high autonomy and their identities are difficult to identify, they are vulnerable to label flip attacks, causing the model to learn wrong rules from wrong labels and reducing the overall performance of the model. In order to effectively resist label flip attacks, a dilutionprotected federated learning method for multistage training models is proposed. This method randomly divides the training data set and uses a dilution protection federated learning algorithm to distribute part of the data to clients participating in the training to limit the amount of data owned by the client and avoid malicious participants with large amounts of data from causing major damage to the model. After each training session, the gradients of all training epochs in that phase are gradient clustered by a dimensionality reduction algorithm in order to identify potentially malicious actors and restrict their training in the next phase. At the same time, the global model parameters are saved after each stage of training to ensure that the training of each stage is based on the model foundation of the previous stage. Experimental results on the data set show that this method reduces the impact of attacks without damaging the model accuracy, and helps improve the convergence speed of the model.

Key words: federated learning, data security, malicious behavior, label flip attack, defense

摘要: 由于联邦学习参与训练的用户自主性较高且身份难以辨别,从而易遭受标签翻转攻击,使模型从错误的标签中学习到错误的规律,降低模型整体性能.为有效抵抗标签翻转攻击,提出了一种多阶段训练模型的稀释防护联邦学习方法.该方法通过对训练数据集进行随机划分,采用稀释防护联邦学习算法将部分数据分发给参与训练的客户端,以限制客户端所拥有的数据量,避免拥有大量数据的恶意参与者对模型造成较大影响.在每次训练结束后,对该阶段中所有训练轮次的梯度通过降维算法进行梯度聚类,以便识别潜在的恶意参与者,并在下一阶段中限制其训练.同时,在每个阶段训练结束后保存全局模型参数,确保每个阶段的训练都基于上一个阶段的模型基础.在数据集上的实验结果表明,该方法在降低攻击影响的同时不损害模型准确率,并且模型收敛速度平均提升了25.2%~32.3%.

关键词: 联邦学习, 数据安全, 恶意行为, 标签翻转攻击, 防御

CLC Number: