Journal of Information Security Reserach ›› 2025, Vol. 11 ›› Issue (5): 439-.

Previous Articles     Next Articles

Active Tor Website Fingerprint Recognition

Zhu Yi, Cai Manchun, Yao Lifeng, Chen Yonghao, and Zhang Yiwen   

  1. (Institute of Information and Network Security, People’s Public Security University of China, Beijing 100038)
  • Online:2025-06-03 Published:2025-06-03

主动Tor网站指纹识别

朱懿蔡满春姚利峰陈咏豪张溢文   

  1. (中国人民公安大学信息网络安全学院北京100038)
  • 通讯作者: 朱懿 硕士研究生.主要研究方向为深度学习、流量分析、网站指纹识别. zhuyi@stu.ppsuc.edu.cn
  • 作者简介:朱懿 硕士研究生.主要研究方向为深度学习、流量分析、网站指纹识别. zhuyi@stu.ppsuc.edu.cn 蔡满春 博士,教授.主要研究方向为网络与通信保密、人工智能安全. caimanchun@ppsuc.edu.cn 姚利峰 硕士研究生.主要研究方向为深度学习、流量分析和入侵检测. yao_li_feng@163.com 陈咏豪 硕士研究生.主要研究方向为深度学习、深度伪造检测和网络安全. 1308924774@qq.com 张溢文 硕士研究生.主要研究方向为深度学习、深度伪造检测和网络安全. 1253332693@qq.com

Abstract: The anonymous communication system Tor is often exploited by criminals, disrupting the network environment and social stability. Website fingerprinting can effectively monitor Tor activities. However, user behavior and website content on Tor change over time, leading to the problem of concept drift, which degrades model performance. Additionally, existing models suffer from large parameter sizes and low efficiency. To address these issues, a Tor website fingerprinting model based on active learning, named TorAL, is proposed. This method utilizes the image classification model ShuffleNetV2 for feature extraction and classification, and improves its downsampling module with Haar wavelet transform to losslessly reduce image resolution. The model’s recognition accuracy surpasses that of existing models. Moreover, by combining active learning, the model is trained with a small amount of highly contributive data, effectively addressing the concept drift problem.

Key words: Tor(the onion router), website fingerprint recognition, darknet, convolutional neural network, active learning

摘要: 匿名通信系统洋葱路由(the onion router, Tor)易被不法分子利用,破坏网络环境和社会稳定,网站指纹识别能对其有效监管.Tor用户行为和网站内容随时间变化,产生概念漂移问题,使模型性能下降,且现有模型参数量大、效率低.针对上述问题,提出基于主动学习的Tor网站指纹识别模型TorAL(Tor active learning),将图像分类模型ShuffleNetV2用于特征提取和分类,使用Haar小波变换改进其下采样模块,以无损降低图像分辨率,模型识别准确率优于现有模型.此外,结合主动学习,用少量对模型贡献较大的数据进行训练,有效应对概念漂移问题.

关键词: 洋葱路由, 网站指纹识别, 暗网, 卷积神经网络, 主动学习

CLC Number: