[1]Nuaimi M, Fourati L C, Hamed B B. Intelligent approaches toward intrusion detection systems for Industrial Internet of things: A systematic comprehensive review[J]. Journal of Network and Computer Applications, 2023, 215: 103637[2]Zheng Wenbo, Gou Chao, Yan Lan. et al. Learning to classify: A flowbased relation network for encrypted traffic classification[C] Proc of the Web Conference 2020. New York: ACM, 2020: 1322[3]Sen S, Spatscheck O, Wang D. Accurate, scalable innetwork identification of P2P traffic using application signatures[C] Proc of the 13th Int Companion Conf on World Wide Web. New York: ACM, 2004: 512521[4]De Lucia M J, Cotton C. Detection of encrypted malicious network traffic using machine learning[C] Proc of 2019 IEEE Military Communications Conference (MILCOM 2019). Piscataway, NJ: IEEE, 2019: 16[5]Banadaki Y M, Robert S. Detecting malicious dns over https traffic in domain name system using machine learning classifiers[J]. Journal of Computer Sciences and Applications, 2020, 8(2): 4655[6]Diwan T D, Choubey S, Hota H S. et al. Feature entropy estimation (FEE) for malicious IoT traffic and detection using machine learning[J]. Mobile Information Systems, 2021, 2021(1): 113[7]童家铖, 陈伟, 倪嘉翼, 等. 面向加密恶意流量的噪声标签检测方法[J]. 信息安全研究, 2023, 9(10): 10231027[8]高源辰, 徐国胜. 基于集成学习策略的网络恶意流量检测技术研究[J]. 信息安全研究, 2023, 9(8): 730738[9]Xia Peipei, Zhang Li, Li Fanzhang. Learning similarity with cosine similarity ensemble[J]. Information Sciences, 2015, 307: 3952[10]李道全, 鲁晓夫, 杨乾乾. 基于孪生神经网络的恶意流量检测方法[J]. 计算机工程与应用, 2022, 58(14): 8995[11]Rong Candong, Gou Gaopeng, Cui Mingxin. et al. Malfinder: An ensemble learningbased framework for malicious traffic detection[C] Proc of 2020 IEEE Symp on Computers and Communications (ISCC). Piscataway, NJ: IEEE, 2020: 77[12]Bazuhair W, Lee W. Detecting malign encrypted network traffic using perlin noise and convolutional neural network[C] Proc of the 10th Annual Computing and Communication Workshop and Conference (CCWC). Piscataway, NJ: IEEE, 2020: 02000206[13]Gao Minghui, Ma Li, Liu Heng. et al. Malicious network traffic detection based on deep neural networks and association analysis[J]. Sensors, 2020, 20(5): 1452[14]Alalwany E, Mahgoub I. Classification of normal and malicious traffic based on an ensemble of machine learning for a vehicle CANnetwork[J]. Sensors, 2022, 22(23): 9195
|