[1]Chen L C, Gao S, Liu B X, et al. UADDPL: An unknown encrypted attack detection method based on deep prototype learning[C] Proc of the Int Conf on Pattern Recognition. Berlin: Springer, 2024: 124140[2]张涛, 陈璐, 张波, 等. 面向未知攻击感知的执行体细粒度调度算法[J]. 信息安全研究, 2025, 11(6): 569577[3]Trendmicro. CVE202336025 Exploited for defense evasion in phemedrone stealer campaign[EBOL]. [20240112]. https:www.trendmicro.comen_usresearch24acve202336025exploitedfordefenseevasioninphemedronesteal.html[4]何国锋. 面向未知威胁的网络攻击行为自感知方法研究及应用[D]. 成都: 电子科技大学, 2024[5]Fatema E H, Noura H, Salman O, et al. Advanced machine learning approaches for zeroday attack detection: A review[C] Proc of the 8th Cyber Security in Networking Conference. Piscataway, NJ: IEEE, 2024: 297304[6]Alazzam H, Sharieh A, Sabri K E. A lightweight intelligent network intrusion detection system using OCSVM and pigeon inspired optimizer[J]. Applied Intelligence, 2022, 52(4): 35273544[7]Mbona I, Eloff J H P. Detecting zeroday intrusion attacks using semisupervised machine learning approaches[J]. IEEE Access, 2022, 10: 6982269838[8]兰景宏, 常昊, 蔡军飞, 等.融合三元组网络和单分类算法的未知攻击检测[JOL]. 计算机应用与软件, 2024 [20250201]. https:link.cnki.neturlid31.1250.TP.20241111.1238.008[9]Moussa M M, Alazzawi L.Cyber attacks detection based on deep learning for clouddew computing in automotive IoT applications[C] Proc of the 2020 IEEE Int Conf on Smart Cloud. Piscataway, NJ: IEEE, 2020: 5561[10]Hwang C, Kim D, Lee T. Semisupervised based unknown attack detection in EDR environment[J]. KSII Trans on Internet and Information Systems, 2020, 14(12): 49094926[11]Kim S, Hwang C, Lee T. Anomaly based unknown intrusion detection in endpoint environments[J]. Electronics, 2020, 9(6): 119[12]Kim C, Chang S Y, Kim J. Zeroday malware detection using thresholdfree autoencoding architecture[C] Proc of the IEEE Int Conf on Big Data. Piscataway, NJ: IEEE, 2021: 12791284[13]Binbusayyis A, Vaiyapuri T. Unsupervised deep learning approach for network intrusion detection combining convolutional autoencoder and oneclass SVM[J]. Applied Intelligence, 2021, 51(10): 70947108[14]Vanerio J, Casas P. Ensemblelearning approaches for network security and anomaly detection[C] Proc of the Workshop on Big Data Analytics and Machine Learning for Data Communication Networks. New York: ACM, 2017: 16[15]Zhang Z, Zhang Y, Niu J, et al. Unknown network attack detection based on openset recognition and active learning in drone network[J]. Trans on Emerging Telecommunications Technologies, 2022, 33(10): 116[16]Shin G, Kim D, Han M. Open set recognition with dissimilarity weight for unknown attack detection[J]. IEEE Access, 2023, 11: 102381102390[17]Ahmad R, Alsmadi I, Alhamdani W, et al. A deep learning ensemble approach to detecting unknown network attacks[J]. Journal of Information Security and Applications, 2022, 67: 115[18]Liu Z, Li S, Zhang Y. Efficient malware originated traffic classification by using generative adversarial networks[C] Proc of the 2020 IEEE Symp on Computers and Communications. Piscataway, NJ: IEEE, 2020: 17[19]Zhao Z, Chen G, Liu T, et al. Attack as detection: Using adversarial attack methods to detect abnormal examples[J]. ACM Trans on Software Engineering and Methodology, 2024, 33(3): 145[20]Liu A, Wang Y P, Li T. SFEGACN: A novel unknown attack detection under insufficient data via intra categories generation in embedding space[J]. Computers & Security, 2021, 105(7): 102262102275[21]Li Z, Qin Z, Shen P, et al. Zeroshot learning for intrusion detection via attribute representation[C] Proc of the Int Conf on Neural Information Processing, Berlin: Springer, 2019: 352364[22]Demirel D Y, Sandikkaya M T. Web based anomaly detection using zeroshot learning with CNN[J]. IEEE Access, 2023, 11: 9151191525[23]Barros P H, Chagas E T C, Oliveira L B, et al. MalwareSMELL: A zeroshot learning strategy for detecting zeroday vulnerabilities[J]. Computers & Security, 2022, 120(12): 118[24]Kumar V, Sinha, D. A robust intelligent zeroday cyberattack detection technique[J]. Complex Intelligence System, 2021, 7(5): 22112234[25]Ahmed A, Aminollah K, Hisham A. Adversarial learning attacks on graphbased IoT malware detection systems[C] Proc of the 39th IEEE Int Conf on Distributed Computing Systems. Piscataway, NJ: IEEE, 2019: 12961305[26]Huu K, Wilson T, Legay A. Unsupervised behavioural mining and clustering for malware family identification[C] Proc of the 36th Annual ACM Symp on Applied Computing. New York: ACM, 2021: 374383[27]Pang G, Shen C, Cao L, et al. Deep learning for anomaly detection: A review[J]. ACM Computing Surveys, 2021, 54(2): 138[28]Yucel M K, Cinbis R G, Duygulu P. How robust are discriminatively trained zeroshot learning models?[J]. Image Vis Computer, 2022, 119(3): 127[29]Won D, Jang Y N, Lee S W. PlausMalGAN: Plausible malware training based on generative adversarial networks for analogous zeroday malware detection[J]. IEEE Trans on Emerging Topics in Computing, 2022, 11(1): 8294[30]Mauro C, Shubham K, Vinod P. A fewshot malware classification approach for unknown family recognition using malware feature visualization[J]. Computers & Security, 2022, 122: 116[31]Liu C, Li B, Zhao J, et al. FewMHGCL: Fewshot malware variants detection via heterogeneous graph contrastive learning[J]. IEEE Trans on Depend Sec Computer, 2022, 14(8): 118[32]Julian B, Anton K, Volker T. NFGNN: Network flow graph neural networks for malware detection and classification[C] Proc of the 33rd Int Conf on Scientific and Statistical Database Management. New York: ACM, 2021: 121132[33]Liu Z, Wang R, Japkowicz N. Research on unsupervised feature learning for Android malware detection based on restricted boltzmann machines[J]. Future Generation Computer Systems, 2021, 120(7): 91108[34]Samaneh M, Andi F, Rasool. Dynamic Android malware category classification using semisupervised deep learning[C] Proc of the 18th IEEE Int Conf on Dependable, Autonomic and Secure Computing. Piscataway, NJ: IEEE, 2020: 515522[35]Samaneh M, Dima A, Ali G. Effective and efficient hybrid Android malware classification using pseudolabel stacked autoencoder[J]. Journal of Network System Manag, 2022, 30(1): 134 |