[1]Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and publickey cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120126[2]Aardal K, Eisenbrand F. The LLL algorithm and integer programming[C] Proc of the Advances in Information Security and Cryptography. Berlin: Springer, 2010: 293307[3]Hanrot G, Xavier P, Damien S. Algorithms for the shortest and closest lattice vector problems[C] Proc of the Advances in IWCC 2011. Berlin: Springer, 2011: 159190[4]Shamir A. A polynornial time algorithm for breaking the basic merklehellman cryptosystem [M] Advances in Cryptology. Berlin: Springer, 1983: 279288[5]Adleman L M. On breaking the iterated merklehellman publickey cryptosystem[M] Advances in Cryptology. Berlin: Springer, 1983: 308308[6]Coppersmith D, Franklin M, Patarin J, et al. Lowexponent RSA with related messages[M] Advances in Cryptology. Berlin: Springer, 1996: 19[7]Coron J S, May A. Dcterministic polynomialtime equivalence of computing the RSA secrct key and factoring[J]. Journal of Cryptolog, 2007, 20: 3950[8]Nitaj A, Ariffin M R K, Massr D I, et al. New attacks on the RSA cryptosystem[J]. Lecture Notes in Computer Science, 2014, 8469: 178198[9]Faugere J C, Gligoroski D. A polytime keyrecovery attack on MQQ cryptosystems[C] Proc of Advances in PKC 2015. Berlin: Springer, 2015: 150174[10]Nitaj A. Another generalization of wieners attack on RSA[G] LNCS 5023: AFRICACRYPT 2008. Berlin: Springer, 2008: 174190[11]Lenstra A K, Lenstra H W, Lovász L. Factoring polynomials with rational coefficients[J]. Mathematische Annalen, 1982, 261(4): 515534[12]Nitaj A, Muhammad R l A. New Attacks on the RSA cryptosystem[G] Proc of Advances in AFRICACRYPT 2014. Berlin: Springer, 2014: 3151[13]Aoki K, Franke J, Kleinjung. A kilobit special number field sieve factorization[G] Proc of Advances in Cryptology. Berlin: Springer, 2007: 112[14]Atanassov E, Georgiev D, Manev N L. ECM integer factorization on GPU cluster[C] Proc of the 35th Int Convention. 2012: 328332 |