信息安全研究 ›› 2019, Vol. 5 ›› Issue (10): 858-864.

• 数字认证专辑 •    下一篇

基于稳定风险特征选择的支付风险识别模型

刘正宵1,段丁阳2,唐志浩2,符天枢2   

  1. 1. 中国科学院大学网络空间安全学院
    2. 中国科学院数据与通信保护研究教育中心
  • 收稿日期:2019-10-08 出版日期:2019-10-15 发布日期:2019-10-08
  • 通讯作者: 刘正宵
  • 作者简介:刘正宵, 硕士研究生,主要研究方向为信息安全,liuzhengxiao@iie.ac.cn 段丁阳, 工程师三级,硕士研究生,主要研究方向为深度学习,duandingyang@iie.ac.cn 唐志浩, 研究实习员,硕士研究生,主要研究方向为信息安全,tangzhihao@iie.ac.cn 符天枢, 工程师,硕士研究生,主要研究方向为大数据,futianshu@iie.ac.cn

Payment Risk Recognition Model Based on Stable Risk Feature Selection

  • Received:2019-10-08 Online:2019-10-15 Published:2019-10-08

摘要: 在移动支付产业蓬勃发展的今天,移动支付安全成为倍受社会关注的问题.大数据时代的到来,使得以大数据的方法来建立移动支付风险识别模型成为一种保障移动支付安全的可行方法.在使用移动支付第三方平台数据建模过程中主要面临着2个问题:首先是要保证模型的时效性和稳定性,让机器学习模型学习到最新的移动支付风险,且能够在尽量长的时间内不需要重复训练;其次,第三方支付平台的风险控制系统会基于对交易的风险判断干预多笔危险交易,产生无标签数据.如何利用这些无标签数据同样是一个要解决的问题.实验结果表明,通过比较训练集与测试集数据统计特征的方法,从这些数据中筛选出平稳特征进行建模可提高模型稳定性,将无标签数据直接标注为负样本同样可以提升模型效果.

关键词: 移动支付, 大数据决策, 风险控制, 机器学习, 特征选择

Abstract: With the rapid development of mobile payment industry, the security of mobile payment has become an issue of great concern to the society. The arrival of the era of big data makes the establishment of risk identification model of mobile payment by means of big data become a feasible method to guarantee the security of mobile payment. There are two major problems in the process of using the thirdparty platform of mobile payment for data modeling: First, the timeliness and stability of the model should be guaranteed. Let the machine learning model learn the latest mobile payment risks and avoid repeated training as long as possible. Secondly, the risk control system of the thirdparty payment platform will intervene in many dangerous transactions based on the risk judgment of transactions and generate unlabeled data. How to use these unlabeled data is also a problem to be solved. The experimental results showed that the smooth feature is selected from these data can improve the stability of the model by comparing the statistical features of the training set and the test set data, and labeling the unlabeled data as negative samples can also improve the model effect.Key wordsmobile payment; big data decision; risk control; machine learning; feature selection

Key words: mobile payment, big data decision, risk control, machine learning, feature selection