[1] Berners-Lee T. Semantic web road map[J]. 1998
[2] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[3] Zeng D, Liu K, Chen Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proc of the 2015 Conf on Empirical Methods in Natural Language Processing. 2015: 1753-1762
[4] Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proc of the 54th Annual Meeting of the Association for Computational Linguistics. 2016: 207-212
[5] Zhang N, Deng S, Sun Z, et al. Attention-based capsule networks with dynamic routing for relation extraction[J]. arXiv preprint, arXiv:1812.11321, 2018.
[6] Mintz M, Bills S, Snow R, et al. Distant supervision for relation extraction without labeled data[C]//Proc of the Joint Conf of the 47th Annual Meeting of the ACL and the 4th International Joint Conf on Natural Language Processing of the AFNLP: Volume 2-Volume 2. Association for Computational Linguistics, 2009: 1003-1011
[7] Wang G, Zhang W, Wang R, et al. Label-free distant supervision for relation extraction via knowledge graph embedding[C]//Proc of the 2018 Conf on Empirical Methods in Natural Language Processing. 2018: 2246-2255
[8] Feng J, Huang M, Zhao L, et al. Reinforcement learning for relation classification from noisy data[C]//Proc of the 32nd AAAI Conf. on Artificial Intelligence. Menlo Park, CA:AAAI, 2018
[9] Qin P, Xu W, Wang W Y. DSGAN: generative adversarial training for distant supervision relation extraction[J]. arXiv preprint, arXiv:1805.09929, 2018
[10] Chen Y, Xu L, Liu K, et al. Event extraction via dynamic multi-pooling convolutional neural networks[C]//Proc of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Int Joint Conf on Natural Language Processing. 2015: 167-176
[11] Nguyen T H, Cho K, Grishman R. Joint event extraction via recurrent neural networks[C]//Proc of the 2016 Conf of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 300-309
[12] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, et al. 2013. Translating Embeddings for Modeling Multi-relational Data[C]//Proc of NIPS2013.2013:2787–2795
[13] Yang Bishan, Wen tau Yih, He Xiaodong, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proc of ICLR2015.2015
[14] Liu Hanxiao, Wu Yuexin, Yang Yiming. Analogical inference for multirelational embeddings[C]//Proc of the 34th Inte Conf onMachine Learning(ICML2017). 2017:2168–2178
[15] Shearer R, Motik B, Horrocks I. HermiT: A Highly-efficient OWL reasoner[C]//Owled. 2008, 432: 91
[16] Sirin E, Parsia B, Grau B C, et al. Pellet: A practical owl-dl reasoner[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2007, 5(2): 51-53
[17] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, et al. Suchanek. 2013. AMIE: Association rule mining under incomplete evidence in ontological knowledge bases[C]//Proc of the 22nd Int World Wide Web Conf, WWW ’13. 2013:413–422
[18] Luis Galárraga, Christina Teflioudi, Katja Hose, et al. Suchanek. Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 6 (2015), 707–730.
[19] Cohen W W. Tensorlog: A differentiable deductive database[J]. arXiv preprint, arXiv:1605.06523, 2016.
[20] Zhang Wen, Paudel B, Wang Liang, et al. Iteratively learning embeddings and rules for knowledge graph reasoning[C/OL]//Proc of the World Wide Web Conf (WWW '19). [2019-09-09].https://doi.org/10.1145/3308558.3313612
[21] Guo S, Wang Q, Wang L, et al. Knowledge graph embedding with iterative guidance from soft rules[C]//Proc of the 32nd AAAI Conf on Artificial Intelligence. Menlo Park, CA:AAAI,2018
[22] Ho V T, Stepanova D, Gad-Elrab M H, et al. Rule learning from knowledge graphs guided by embedding models[C]//Proc of Int Semantic Web Conference. Cham: Springer, 2018: 72-90
[23] Socher R, Ganjoo M, Manning C D, et al. Zero-shot learning through cross-modal transfer[C]//Advances in Neural Information Processing systems. 2013: 935-943
[24] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint, arXiv:1609.02907, 2016
[25] Lampert C H, Nickisch H, Harmeling S. Attribute-based classification for zero-shot visual object categorization[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 36(3): 453-465
[26] Frome A, Corrado G S, Shlens J, et al. Devise: A deep visual-semantic embedding model[C]//Advances in Neural Information Processing Systems. 2013: 2121-2129
[27] Norouzi M, Mikolov T, Bengio S, et al. Zero-shot learning by convex combination of semantic embeddings[J]. arXiv preprint, arXiv:1312.5650, 2013.
[28] Kodirov E, Xiang T, Gong S. Semantic autoencoder for zero-shot learning[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway,NJ:IEEE,2017: 3174-3183
[29] Changpinyo S, Chao W L, Gong B, et al. Synthesized classifiers for zero-shot learning[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2016: 5327-5336
[30] Wang X, Ye Y, Gupta A. Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2018: 6857-6866
[31] Kampffmeyer M, Chen Y, Liang X, et al. Rethinking knowledge graph propagation for zero-shot learning[C]//Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2019: 11487-11496
[32] Zhang J, Lertvittayakumjorn P, Guo Y. Integrating semantic knowledge to tackle zero-shot text classification[J]. arXiv preprint, arXiv:1903.12626, 2019
[33]黄晓斌, 赵超. 文本挖掘在网络舆情信息分析中的应用[J]. 情报科学, 2009, 27(1):94-99
[34] Thomas M, Pang B, Lee L. Get out the vote: Determining support or opposition from congressional floor-debate transcripts[C]//Proc of the 2006 Conf on empirical methods in natural language processing. Association for Computational Linguistics. 2006: 327-335
[35] Amr Ahmed , Eric P. Xing. Staying informed: Supervised and semi-supervised multiview topical analysis of ideological perspective[C]//Proc of Conf on Empirical Methods in Natural Language Processing. 2010:1140-1150
[36] Yanchuan Sim, Brice D. L. Acree, Justin H. Gross and Noah A. Smith. Measuring ideological proportions in political speeches[C]//Proc of Conf on Empirical Methods in Natural Language Processing. 2013: 91-101
[37] Minghui Qiu, Yanchuan Sim, Noah A. Smith and Jing Jiang. Modeling user arguments, interactions, and attributes for stance prediction in online debate forums[C]//Proc of SIAM Int Conf on Data Mining. 2015: 855-863
[38] Chen W, Zhang X, Wang T, et al. Opinion-aware knowledge graph for political ideology detection[C]//Proc of IJCAI. 2017: 3647-3653
[39]李扬,潘泉,杨涛.基于短文本情感分析的敏感信息识别[J].西安交通大学学报,2016,50(9):80-84
[40]胡鹏飞. 金融科技在互联网金融行业性风险防范领域的应用. 大数据[J], 2018, 4(1): 2018012
[41] Zhu M, Bao B, Xu C. 知识图谱发展与构建的研究进展[J]. Nanjing Xinxi Gongcheng Daxue Xuebao, 2017, 9(6): 575-582
[42]邵蓥侠,冯是聪. 社交网络分析在公共安全领域的应用[J]. 大数据, 2017, 3(2): 2017018
|