[1] 360安全大脑团队. 2018年中国手机安全状况报告[EB/OL]. 2019[2019-03-31]. http://zt.360.cn/1101061855.php?dtid=1101061451&did=610107232.
[2] 闫晋佩, 何晖, 安文欢, et al. 国内第三方Android应用市场安全性的检测 [J]. 计算机科学, 2015, 42(12): 143–147.
[3] Yerima S Y, Sezer S, McWilliams G, et al. A New Android Malware Detection Approach Using Bayesian Classification[C/OL] //2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA). 2013: 121–128 [2019-03-31]. http://dx.doi.org/10.1109/AINA.2013.88.
[4] ARP D, SPREITZENBARTH M, HüBNER M, et al. DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket[C/OL] //Symposium on Network and Distributed System Security (NDSS). 2014: 23–26 [2019-03-31]. http://dx.doi.org/10.14722/ndss.2014.23247.
[5] MCLAUGHLIN N, DOUPé A, JOON AHN G, et al. Deep Android Malware Detection[C/OL] //Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. 2017: 301–308 [2019-03-31]. http://dx.doi.org/10.1145/3029806.3029823.
[6] 张帆, 钟章队. 基于权限分析的手机恶意软件检测与防范 [J]. 信息网络安全, 2015(10): 66–73.
[7] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述 [J]. 计算机应用, 2016, 36(9): 2508–2515.
[8] 周颜军, 王双成, 王辉. 基于贝叶斯网络的分类器研究 [J]. 东北师大学报:自然科学版, 2003, 35(2): 21–27.
[9] Zhang Y , Wallace B . A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification[J]. Computer Science, 2015.
[10] Allix K , Tegawendé F. Bissyandé, Klein J , et al. AndroZoo: collecting millions of Android apps for the research community[C]// Proceedings of the 13th International Conference on Mining Software Repositories (MSR '16). New York: ACM , 2016, 468-471.
[11] 张锐, 杨吉云. 基于权限相关性的 Android 恶意软件检测 [J]. 计算机应用, 2014, 34(5): 1322–1325.
[12] SHABTAI A, KANONOV U, ELOVICI Y, et al. ”Andromaly”: A behavioral malware detection framework for android devices[J/OL]. J. Intell. Inf. Syst., 2012, 38: 161–190 [2019-03-31]. http://dx.doi.org/10.1007/s10844-010-0148-x..
[13] 陈四通. 基于深度学习算法的 Android 恶意应用检测技术研究与实现 [D]. 北京: 北京邮电大学, 2017.
[14] 楼赟程,施勇,薛质. 基于逆向工程的Android恶意行为检测方法[J]. 信息安全与通信保密,2015,(4):83-87.doi:10.3969/j.issn.1009-8054.2015.04.018.
[15] 莫君生. 基于深度学习的 Android 软件恶意行为检测方法的研究与实现 [D]. 北京: 北京邮电大学, 2017.
[16] ANDOK, TAKAMAEDA-YAMAZAKIS, IKEBEM, et al. A Multithreaded CGRA for Convolutional Neural Network Processing[J/OL]. Circuits and Systems, 2017, 08: 149–170 [2019-03-31]. http://dx.doi.org/10.4236/cs.2017.86010.
[17] ZHANG S, CHEN Z, GU S, et al. Breast tumor detection in double views mammography based on Simple Bias[C] //2013 IEEE International Conference on Medical Imaging Physics and Engineering. 2013: 240–244.
[18] 王星. 安卓应用程序若干典型特征刻画及其恶意行为检测方法 [D]. 北京: 北京交通大学, 2018.
[19] 朱涛. 基于Linux内核的Android安全探讨[J]. 电子制作, 2013(5x):98-98.
[20] SPREITZENBARTH M, FREILING F, ECHTLER F, et al. Mobile-sandbox: Having a deeper look into Android applications[C/OL] //.2013 : 1808 – 1815. http://dx.doi.org/10.1145/2480362.2480701.
|