[1] Ahmadi M, Ulyanov D, Semenov S, et al. Novel feature extraction, selection and fusion for effective malware family classification[C]//Proc of the 6th ACM Conf on Data and Application Security and Privacy. New York:ACM, 2016: 183-194
[2] 周紫瞻,王俊峰. 基于GPU加速的恶意代码字节码特征提取方法研究 [J]. 四川大学学报: 自然科学版, 2019, 56(2):45-52
[3] Hassen M, Chan P K. Scalable function call graph-based malware classification[C]//Proc of the 7th ACM on Conf on Data and Application Security and Privacy. New York:ACM, 2017: 239-248
[4] Obeis N T, Bhaya W. Malware analysis using APIs pattern mining[J]. Int Journal of Engineering & Technology, 2018, 7(3): 502-506.
[5] Wüchner T, Cisłak A, Ochoa M, et al. Leveraging compression-based graph mining for behavior-based malware detection[J]. IEEE Trans on Dependable and Secure Computing, 2017, 16(1): 99-112
[6] Salehi Z, Sami A, Ghiasi M. MAAR: Robust features to detect malicious activity based on API calls, their arguments and return values[J]. Engineering Applications of Artificial Intelligence, 2017, 59:93-102
[7] 朱雪冰,周安民,左政.基于家族行为频繁子图挖掘的恶意代码检测[J].信息安全研究,2019,5(2):105-113
[8] 荣俸萍,方勇,左政,等.MACSPMD:基于恶意API调用序列模式挖掘的恶意代码检测[J].计算机科学,2018,45(5):131-138
[9] Ding Y, Xia X, Chen S, et al. A malware detection method based on family behavior graph[J]. Computers & Security, 2018, 73: 73-86
[10] Ki Y, Kim E, Kim H K. A novel approach to detect malware based on API call sequence analysis[J]. Int Journal of Distributed Sensor Networks, 2015, 11(6): 659101.
[11] Kim Y. Convolutional neural networks for sentence classification[J]. arXiv preprint. arXiv:1408.5882, 2014
[12]Guarnieri C, Tanasia A, Bremer J,et al.Cuckoo-sandbox [EB/OL]. [2019-11-11].https://cuckoosandbox.org
[13]Melissa.VirusShare[EB/OL].[2019-11-25].https://virusshare.com/torrents.4n6
[14]VirusTotal.VirusTotal[EB/OL].[2019-11-25]https://www.virustotal.com
[15] 芦效峰, 蒋方朔, 周箫,等. 基于API序列特征和统计特征组合的恶意样本检测框架[J]. 清华大学学报:自然科学版, 2018, 58(5): 500-508
|