[1] 巫锡洪, 刘宝旭, 杨沛安. 基于域名的僵尸网络行为分析[J]. 信息网络安全, 2013(09):16-19.
[2] 袁福祥,王琤,刘粉等.基于IP分布及请求响应时间的恶意fast-flux域名检测算法[J].信息工程大学学报,2017,18(5):93-98.
[3] 康乐,李东,余翔湛.基于SVM的Fast-flux僵尸网络检测技术研究[J].智能计算机与应用,2011,1(1):24-27.
[4] 刘资茂,李芝棠,李战春等.基于代理控制力的Fast-Flux 僵尸网络检测方法[J].广西大学学报:自然科学版,2011,36(增刊1):105-109.
[5] Hsu C,Huang C,Chen K, Fast-flux bot detection in real time[C]//International Conference on Recent Advances in Intrusion Detection. Springer-Verlag, 2010:3-4.
[6] Stalmans E , Hunter S O , Irwin B . Geo-spatial autocorrelation as a metric for the detection of Fast-Flux botnet domains[C]// Information Security for South Africa. IEEE, 2012.
[7] Nazario J, Holz T. As the net churns: Fast-flux botnet observations[C]//2008 3rd International Conference on Malicious and Unwanted Software (MALWARE). IEEE, 2008: 24–31.
[8] 左晓军,董立勉,曲武.基于域名系统流量的Fast—Flux僵尸网络检测方法[J].计算机工程,2017,43(9):185-193.
[9] Paul T , Tyagi R , Manoj B S , et al. Fast-flux botnet detection from network traffic[C]// India Conference. IEEE, 2015.
[10] Basheer Al-Duwairi, Ahmad Al-Hammouri, Monther Aldwairi, et al. GFlux: A Google-Based System for FastFlux Detection[C]//IEEE CNS.IEEE,2015:755-756.
[11] Soltanaghaeie, Kharrazim. Detection of fast- flux botnets through DNS traffic analysis[J]. Scientia Iranica ,2015, 22(6):2389-2400.
[12] Freund Y . Boosting a Weak Learning Algorithm By Majority[J]. Information and Computation, 1997, 121(2):20-23.
[13] Freund Y , Schapire R E . A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[J]. Journal of Computer & System Sciences, 1999, 55:119-139.
[14] Freund Y. An Adaptive Version of the Boost by Majority Algorithm[J]. Machine Learning, 2001, 43(3):293-318.
[15]Google.Fast-Fluxdatasets.[OL/DB]https://sites.google.com/site/huangpublication/datasets/-1-fast-flux-attaack-datasets,2018-10-25
|