摘要: 联邦学习能够实现数据的可用不可见,是数据安全治理的一种新模式,但是联邦学习同时面临模型投毒攻击的威胁,安全性亟需提升.针对该问题,提出了一种基于联邦学习的动态缓冲可回调(dynamic cacheable revocable, DCR)模型投毒防御机制.该机制基于损失的模型投毒防御方法,每一轮迭代之前计算并使用动态阈值,使得敌手无法先验地了解防御机制,提升了敌手的攻击难度.同时在机制中设置缓冲期轮次,降低了良性节点被“误杀”的风险.且系统存储每一轮的全局模型参数,若遭受模型投毒可重新加载缓冲期轮次前的全局模型参数,实现可回调.可回调的设置能够减少模型投毒攻击对全局模型的负面影响,使得联邦学习模型在遭受攻击行为之后仍能以较好的性能达到收敛,保证了联邦学习模型的安全与性能.最后在TFF(TensorFlowFederated)的实验环境下,验证了该机制的防御效果与模型性能.关键词数据治理;联邦学习;模型投毒;恶意节点;动态缓冲可回调