信息安全研究 ›› 2023, Vol. 9 ›› Issue (12): 1226-.

• 技术应用 • 上一篇    

大数据驱动下的数据全生命周期安全监测方法

戴荣峰陶晓英于萌郭丞徐文涛   

  1. (中国联合网络通信有限公司上海市分公司上海200082)
  • 出版日期:2023-12-20 发布日期:2023-12-29
  • 通讯作者: 戴荣峰 主要研究方向为企业数据治理体系与数据安全运营体系. dairf3@chinaunicom.cn
  • 作者简介:戴荣峰 主要研究方向为企业数据治理体系与数据安全运营体系. dairf3@chinaunicom.cn 陶晓英 硕士,高级工程师.主要研究方向为企业数字化转型与数据要素赋能. taoxiaoying@chinaunicom.cn 于萌 主要研究方向为网络信息安全运营体系与网络安全产业链. yum3@chinaunicom.cn 郭丞 硕士.主要研究方向为数据安全前沿领域技术. guoc57@chinaunicom.cn 徐文涛 硕士.主要研究方向为企业数据治理体系与数据安全运营体系. xuwt15@chinaunicom.cn

Data Life Cycle Safety Monitoring Method Driven by Big Data

Dai Rongfeng, Tao Xiaoying, Yu Meng, Guo Cheng, and Xu Wentao   

  1. (Shanghai Branch, China United Network Communication Co., Ltd., Shanghai 200082)
  • Online:2023-12-20 Published:2023-12-29

摘要: 针对传统数据监测方式覆盖范围小、监测精度低、自动化程度低等问题,从数据全生命安全周期出发,提出了一种基于大数据驱动下的数据全生命周期安全监测方法.该方法基于特征解析识别模型、内容分割模型、实时数据监测模型、文件解析检索模型以及用户异常行为预测模型,实时监测数据安全风险,有效保障了数据资产的安全流转.经实验测试,该方法的敏感数据采集、敏感页面捕获、敏感流量监测以及敏感文件解析的总体准确率高于92%,用户的敏感行为预测准确率高于93%,有效提高了敏感数据的监测范围和精度.

关键词: 特征解析, 内容分割, 数据监测, 文件解析, 异常行为预测

Abstract: Aiming at the problems of small coverage, low monitoring accuracy and low automation of traditional data monitoring methods, a data lifecycle safety monitoring method driven by large data is put forward, which is based on feature analysis recognition model, content segmentation model, realtime data monitoring model, file analysis retrieval model and user abnormal behavior prediction model to monitor data security risk in realtime. It effectively guarantees the safe flow of data assets. After testing, the overall accuracy of sensitive data collection, sensitive page capture, sensitive flow monitoring and sensitive file parsing under this method is higher than 92%, and the accuracy of user’s sensitive behavior prediction is higher than 93%, which effectively improves the monitoring range and accuracy of sensitive data.

Key words: Feature parsing, content segmentation, data detection, document analysis, anomalous behavior prediction

中图分类号: