参考文献
[1]杨强. AI与数据隐私保护: 联邦学习的破解之道[J]. 信息安全研究, 2019, 5(11): 961965[2]刘晗. 个人信息的加密维度: 《密码法》实施后的密码应用与规制路径[J]. 清华法学, 2022, 16(3): 95111[3]赵精武. 破除隐私计算的迷思: 治理科技的安全风险与规制逻辑[J]. 华东政法大学学报, 2022 (3): 3549[4]唐林垚. 数据合规科技的风险规制及法理建构[J]. 东方法学, 2022 (1): 7993[5]Yin X, Zhu Y, Hu J. A comprehensive survey of privacypreserving federated learning: A taxonomy, review, and future directions[J]. ACM Computing Surveys, 2021, 54(6): 136[6]Li Q, Wen Z, Wu Z, et al. A survey on federated learning systems: Vision, hype and reality for data privacy and protection[J]. arXiv, prepring, arXiv:1907.09693v7, 2021[7]Nguyen D C, Ding M, Pathirana P N, et al. Federated learning for Internet of things: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 16221658[8]Truong N, Sun K, Wang S, et al. Privacy preservation in federated learning: An insightful survey from the GDPR perspective[J]. Computers & Security, 2021, 110: 102402[9]袁立志. 联邦学习能否解决金融数据整合难题?[EBOL]. [20221005]. https:www.jingtian.comContent202005081607096522.html.[10]Veale M, Binns R, Edwards L. Algorithms that remember: Model inversion attacks and data protection law[J]. arXiv, prepring, arXiv:1807.04644, 2018[11]杨合庆. 《中华人民共和国个人信息保护法》释义[M]. 北京: 法律出版社, 2022[12]Qiang Yang, Liu Yang, Chen Tianjian, et al. Federated machine learning: Concept and applications[J]. ACM Trans on Intelligent Systems and Technology, 2019, 10(2): 119[13]Bradford A. The Brussels Effect: How the European Union Rules the World[M]. New York: Oxford University Press, 2020
|