[1]Dwivedi Y K, Kshetri N, Hughes L, et al.“So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy[J]. International Journal of Information Management, 2023, 71: 102642[2]石波, 于然, 朱健. 基于知识图谱的网络空间安全威胁感知技术研究[J]. 信息安全研究, 2022, 8(8): 845853[3]Liu Ze, Ning Jia, Cao Yue, et al. Video swin transformer[C] Proc of IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2022: 32023211[4]Zuo Junjia, Gao Yali, Li Xiaoyong, et al. An endtoend entity and relation joint extraction model for cyber threat intelligence[C] Proc of the Int Conf on Big Data Analytics (ICBDA). Piscataway, NJ: IEEE, 2022: 204209[5]Wu Yiming, Liu Qianjun, Liao Xiaojing, et al. Price tag: Towards semiautomatically discovery tactics, techniques and procedures of Ecommerce cyber threat intelligence[JOL]. 2021 [20240318]. https:ieeexplore.ieee.orgabstractdocument9576636[6]Yao Limin, Riedel S, McCallum A. Unsupervised relation discovery with sense disambiguation[C] Proc of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACL, 2012: 712720[7]于忠坤, 王俊峰, 唐宾徽. 基于注意力机制和特征融合的网络威胁情报技战术分类研究[J]. 四川大学学报: 自然科学版, 2022, 59(5): 96103[8]Gao Peng, Shao Fei, Liu Xiaoyuan, et al. Enabling efficient cyber threat hunting with cyber threat intelligence[C] Proc of the 37th IEEE Int Conf on Data Engineering (ICDE). Piscataway, NJ: IEEE, 2021: 193204[9]Shao Hao, Wang Lunwen, Zhu Rangang. Link prediction for heterogeneous information networks based on enhanced metapath aggregation and attention mechanism[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(9): 30873103[10]Xun Shuang, Li Xiaoyong, Gao Yali. AITI: An automatic identification model of threat intelligence based on convolutional neural network[C] Proc of the 4th Int Conf on Innovation in Artificial Intelligence. New York: ACM, 2020: 2024[11]Liu Jian, Yan Junjie, Jiang Jun, et al. TriCTI: An actionable cyber threat intelligence discovery system via triggerenhanced neural network[J]. Cybersecurity, 2022, 5(1): 823[12]Wang Xuren, Liu Runshi, Yang Jie, et al. Cyber threat intelligence entity extraction based on deep learning and field knowledge engineering[C] Proc of the 25th IEEE Int Conf on Computer Supported Cooperative Work in Design (CSCWD). Piscataway, NJ: IEEE, 2022: 406413[13]Guo Yongyan, Liu Zhengyu, Huang Cheng, et al. A framework for threat intelligence extraction and fusion[J]. Computers & Security, 2023, 132: 103371[14]Liu Zhengyu, Su Haochen, Wang Nannan, et al. Coreference resolution for cybersecurity entity: Towards explicit, comprehensive cybersecurity knowledge graph with low redundancy[C] Proc of Int Conf on Security and Privacy in Communication Systems. Berlin: Springer, 2022: 89108[15]Liu Shuang, Yang Hui, Li Jiayi, et al. Chinese named entity recognition method in history and culture field based on BERT[J]. International Journal of Computational Intelligence Systems, 2021, 14(1): 110[16]Jo H, Lee Y, Shin S. Vulcan: Automatic extraction and analysis of cyber threat intelligence from unstructured text[J]. Computers & Security, 2022, 120: 102763[17]Liu Peipei, Li Hong, Wang Zuoguang, et al. Multifeatures based semantic augmentation networks for named entity recognition in threat intelligence[C] Proc of the 26th Int Conf on Pattern Recognition (ICPR). Piscataway, NJ: IEEE, 2022: 15571563[18]Orbinato V, Barbaraci M, Natella R, et al. Automatic mapping of unstructured cyber threat intelligence: An experimental study[C] Proc of the 33rd IEEE Int Symp on Software Reliability Engineering (ISSRE). Piscataway, NJ: IEEE, 2022: 181192[19]Joshi M, Chen Danqi, Liu Yinhan, et al. Spanbert: Improving pretraining by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020, 8: 6477[20]张弛, 翁方宸, 张玉清. ChatGPT在网络安全领域的应用、现状与趋势[J]. 信息安全研究, 2023, 9(6): 500509
|