信息安全研究 ›› 2024, Vol. 10 ›› Issue (11): 1028-.

• 数实融合专题 • 上一篇    下一篇

大语言模型在威胁情报生成方面的研究进展

池亚平1,2吴冰1,2徐子涵2   

  1. 1(西安电子科技大学通信工程学院西安710071)
    2(北京电子科技学院网络空间安全系北京100070)
  • 出版日期:2024-11-10 发布日期:2024-11-11
  • 通讯作者: 池亚平 硕士,教授.主要研究方向为网络安全防护、云计算安全. chiyp_besti@163.com
  • 作者简介:池亚平 硕士,教授.主要研究方向为网络安全防护、云计算安全. chiyp_besti@163.com 吴冰 硕士研究生.主要研究方向为网络威胁情报. W15536363329@163.com 徐子涵 硕士研究生.主要研究方向为网络威胁情报. 13767067665@163.com

Research Progress on Large Language Models in the Generation of  Threat Intelligence

Chi Yaping1,2, Wu Bing1,2, and Xu Zihan2   

  1. 1(School of Telecommunications Engineering, Xidian University, Xi’an 710071)
    2(School of Cyberspace Security, Beijing Electronics Science & Technology Institute, Beijing 100070)
  • Online:2024-11-10 Published:2024-11-11

摘要: 在计算机语言处理的广阔领域中,一种被称为大语言模型的革命性实体崭露头角,以其理解复杂语言模式和产生一致且上下文相关回应的巨大能力而引起关注.大语言模型是一种人工智能模型,已经成为各种任务的强大工具,包括自然语言处理、机器翻译和问答.在威胁情报的实际应用中这些模型表现出色,特别是在实体识别、事件分析和关系抽取等关键任务上取得了显著的优势.其上下文理解的能力使其能够更好地处理复杂的威胁情境,而多层次表示学习使其能够捕捉文本的不同层次结构.此外,大语言模型通过迁移学习的方式,将在通用语言理解上获得的知识迁移到威胁情报任务中,提高了模型对不同领域和特定任务的适应性.这一研究趋势不仅推动了威胁情报领域的技术创新,也为更加智能、高效的威胁分析和应对提供了新的可能性.然而,随着研究的深入,仍需解决数据异构性、隐私保护等问题,以便更好地推动大语言模型在威胁情报领域的可持续发展.

关键词: 大语言模型, 威胁情报, 自然语言处理, Transformer, 应用挑战

Abstract: In the expansive realm of computational language processing, a revolutionary entity known as large language models has emerged, garnering attention for its profound ability to comprehend intricate language patterns and generate consistent, contextually relevant responses. Large language models, a type of artificial intelligence, have evolved into powerful tools for various tasks, including natural language processing, machine translation, and questionanswering. In the practical application of threat intelligence, these models exhibit exceptional performance, particularly showcasing significant advantages in critical tasks such as entity recognition, event analysis, and relation extraction. Their contextual understanding capabilities enable them to navigate complex threat scenarios effectively, while hierarchical representation learning allows them to capture diverse structural layers within the text. Furthermore, large language models enhance their adaptability to different domains and specific tasks by leveraging knowledge acquired through transfer learning from general language understanding tasks to threat intelligence tasks. This research trend not only propels technological innovation in the field of threat intelligence but also opens new possibilities for more intelligent and efficient threat analysis and response. However, as research advances, challenges such as data heterogeneity and privacy protection need to be addressed to better facilitate the sustainable development of large language models  in the threat intelligence domain.

Key words: large language models, threat intelligence, natural language processing, Transformer, application challenges

中图分类号: