[1]Zhang H G, Mu Y. Cyberspace security[J]. China Communication, 2016, 13(11): 6869[2]Su Y, Qi K, Di C, et al. Learning automata based feature selection for network traffic intrusion detection[C] Proc of the 3rd IEEE Int Conf on Data Science in Cyberspace. Piscataway, NJ: IEEE, 2018: 622627[3]Li J, Cheng K, Wang S, et al. Feature selection: A data perspective[J]. ACM Computing Surveys, 2017, 50(6): 145[4]唐玺博, 张立民, 钟兆根. 基于ADASYN与改进残差网络的入侵流量检测识别[J]. 系统工程与电子技术, 2022, 44(12): 38503862[5]苏新, 田天, Gong Ziyang, 等. 基于异常行为的海洋气象传感网的入侵检测方法研究[J]. 通信学报, 2023, 44(7): 8699[6]李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673688[7]何红艳, 黄国言, 张炳, 等. 基于多种特征选择策略的入侵检测模型研究[J]. 信息安全研究, 2021, 7(3): 225232[8]Stiawan D, Idris M Y B, Bamhdi A M, et al. CICIDS—2017 dataset feature analysis with information gain for anomaly detection[J]. IEEE Access, 2020, 8: 132911132921[9]李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述[J]. 计算机工程与应用, 2019, 55(24): 1019[10]董书琴, 张斌. 基于深度特征学习的网络流量异常检测方法[J]. 电子与信息学报, 2020, 42(3): 695703[11]尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络——双向长短期记忆网络模型的流量异常检测方法[J]. 电子与信息学报, 2023, 45(10): 37193728[12]石磊, 张吉涛, 高宇飞, 等. 基于Transformer与BiLSTM的网络流量入侵检测[J]. 计算机工程, 2023, 49(3): 3936, 57[13]Sadique F, Sengupta S. Modeling and analyzing attacker behavior in IoT botnet using temporal convolution network (TCN)[J]. Computers & Security, 2022, 117: 102714[14]Liu F T, Ting K M, Zhou Z H. Isolation forest[C] Proc of the 8th IEEE Int Conf on Data Mining. Piscataway, NJ: IEEE, 2008: 413422[15]Zhang L, Song J, Gao A, et al. Be your own teacher: Improve the performance of convolutional neural networks via self distillation[C] Proc of the IEEECVF Int Conf on Computer Vision. Piscataway, NJ: IEEE, 2019: 37133722[16]Lin M, Chen Q, Yan S. Network in network[J]. arXiv preprint, arXiv:1312.4400, 2013[17]Dhanabal L, Shantharajah S P. A study on NSLKDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6): 446452[18]Cui J, Zong L, Xie J, et al. A novel multimodule integrated intrusion detection system for highdimensional imbalanced data[J]. Applied Intelligence, 2023, 53(1): 272288[19]梁欣怡, 行鸿彦, 侯天浩. 基于自监督特征增强的CNNBiLSTM网络入侵检测方法[J]. 电子测量与仪器学报, 2022, 36(10): 6573[20]Zhang G, Wang X, Li R, et al. Network intrusion detection based on conditional Wasserstein generative adversarial network and costsensitive stacked autoencoder[J]. IEEE Access, 2020, 8: 190431190447 |