信息安全研究 ›› 2024, Vol. 10 ›› Issue (12): 1122-.

• 综合安全防御体系专题 • 上一篇    下一篇

威胁情报中命名实体识别技术研究与分析

池亚平1,2徐子涵1吴冰1,2王志强1彭文龙1   

  1. 1(北京电子科技学院网络空间安全系北京100070)
    2(西安电子科技大学通信工程学院西安710071)
  • 出版日期:2024-12-25 发布日期:2024-12-25
  • 通讯作者: 池亚平 硕士,教授.主要研究方向为网络安全防护、云计算安全. chiyp_besti@163.com
  • 作者简介:池亚平 硕士,教授.主要研究方向为网络安全防护、云计算安全. chiyp_besti@163.com 徐子涵 硕士研究生.主要研究方向为网络威胁情报. 13767067665@163.com 吴冰 硕士研究生.主要研究方向为网络威胁情报. W15536363329@163.com 王志强 博士,副教授.主要研究方向为人工智能. wangzq@besti.edu.cn 彭文龙 硕士研究生.主要研究方向为网络威胁情报. 1531740985@qq.com

Research and Analysis of Named Entity Recognition Technology in #br# Threat Intelligence#br# #br#

Chi Yaping1,2, Xu Zihan1, Wu Bing1,2, Wang Zhiqiang1, and Peng Wenlong1   

  1. 1(School of Cyberspace Security, Beijing Electronics Science & Technology Institute, Beijing 100070)
    2(School of Telecommunications Engineering, Xidian University, Xi’an 710071)
  • Online:2024-12-25 Published:2024-12-25

摘要: 面对日益复杂多变的网络安全攻击,迅速获取最新的网络威胁情报对于实时识别、阻断和追踪网络攻击至关重要.解决这一问题的关键在于如何有效地获取网络威胁情报数据,而命名实体识别技术是解决这一问题的热点技术之一.系统分析了多种基于深度学习的命名实体识别方法,而后设计了一种适用于威胁情报领域的命名实体识别模型,并进行了实验验证和分析.最后对命名实体识别方法面临的挑战及其在网络安全领域的发展前景进行了分析和展望.

关键词: 网络安全攻击, 威胁情报, 命名实体识别, 深度学习, 挑战分析

Abstract: In the face of increasingly complex network security attacks, it is very important to quickly obtain the latest network threat intelligence for realtime identification, blocking and tracking of network attacks. The key to solve this problem is how to obtain network threat intelligence data effectively, and named entity recognition technology is one of the hot technologies to solving this problem. This paper systematically analyzes several named entity recognition methods based on deep learning, and then designs a named entity recognition model suitable for threat intelligence field, and carries out experimental verification and analysis. Finally, the challenges faced by named entity recognition methods and their development prospects in the field of network security are analyzed and prospected.

Key words: network security attacks, threat intelligence, named entity recognition, deep learning, challenge analysis

中图分类号: