[1]Misecurity. 消费级物联网安全基线[EBOL]. (20220207) [20230716]. https:github.comMiSecurityCyberSecurityBaselineforConsumerInternetofThingsblobmainresourcespdf消费级物联网安全基线.pdf[2]徐金才, 任民, 李琦, 等.图像对抗样本的安全性研究概述[J]. 信息安全研究, 2021, 7(4): 294309[3]王志强, 都迎迎, 林雨衡, 等.基于文本关键词的对抗样本生成技术研究[J]. 信息安全研究, 2023, 9(4): 338346[4]佟萌. 基于对抗样本的网络欺骗流量生成方法研究[D]. 武汉: 华中科技大学, 2022[5]Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks[J]. arXiv preprint, arXiv:1312.6199, 2013[6]Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint, arXiv:1412.6572, 2014[7]Kurakin A, Goodfellow I J, Bengio S. Adversarial examples in the physical world[M] Artificial Intelligence Safety and Security. London: Chapman and Hall, 2018: 99112[8]Dong Y, Liao F, Pang T, et al. Boosting adversarial attacks with momentum[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2018: 91859193[9]Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C] Proc of the 2017 IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 2017: 3957[10]Papernot N, McDaniel P, Jha S, et al. The limitations of deep learning in adversarial settings[C] Proc of the 2016 IEEE European Symp on Security and Privacy. Piscataway,NJ: IEEE, 2016: 372387[11]Sivanathan A, Gharakheili H H, Loi F, et al. Classifying IoT devices in smart environments using network traffic characteristics[J]. IEEE Trans on Mobile Computing, 2018, 18(8): 17451759[12]Luo X, Zhou P, Chan E W W, et al. HTTPOS: Sealing information leaks with browserside obfuscation of encrypted flows[C] Proc of the Network and Distributed System Security Symposium. San Diego: NDSS, 2011[13]Mohajeri Moghaddam H, Li B, Derakhshani M, et al. Skypemorph: Protocol obfuscation for tor bridges[C] Proc of the 2012 ACM Conf on Computer and Communications Security. New York: ACM, 2012: 97108[14]Apthorpe N, Huang D Y, Reisman D, et al. Keeping the smart home private with smart(er) IoT traffic shaping[J]. Proceedings on Privacy Enhancing Technologies, 2019, 2019(3):128148[15]李杰, 周路, 李华欣, 等.基于生成对抗网络的网络流量特征伪装技术[J]. 计算机工程, 2019, 45(12): 119126[16]胡永进, 郭渊博, 马骏, 等.基于对抗样本的网络欺骗流量生成方法[J]. 通信学报, 2020, 41(9): 5970[17]Wang W, Zhu M, Zeng X, et al. Malware traffic classification using convolutional neural network for representation learning[C] Proc of the 2017 Int Conf on Information Networking (ICOIN). Piscataway, NJ: IEEE, 2017: 712717[18]He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2016: 770778[19]Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition[J]. arXiv preprint, arXiv:1409.1556, 2014[20]Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2017: 47004708[21]Deng J, Dong W, Socher R, et al. ImageNet: A largescale hierarchical image database[C] Proc of the 2009 IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009: 248255[22]Campos D, OConnor T J. Towards labeling ondemand IoT traffic[COL] Proc of the Cyber Security Experimentation and Test Workshop. 2021 [20230716]. https:cset21.isi.edupaperscset219.pdf
|