[1]Saljoughi A S, Mehrvarz M, Mirvaziri H. Attacks and intrusion detection in cloud computing using neural networks and particle swarm optimization algorithms[J]. Emerging Science Journal, 2017, 1(4): 179191[2]Ahsan M K. Increasing the predictive potential of machine learning models for enhancing cybersecurity[D]. North Dakota State: North Dakota State University, 2021[3]Kim J, Shin Y, Choi E. An intrusion detection model based on a convolutional neural network[J]. Journal of Multimedia Information System, 2019, 6(4): 165172[4]Kim J, Kim J, Thu H L T, et al. Long short term memory recurrent neural network classifier for intrusion detection[C] Proc of 2016 Int Conf on Platform Technology and Service (PlatCon). Piscataway, NJ: IEEE, 2016: 15[5]Fu Y, Du Y, Cao Z, et al. A deep learning model for network intrusion detection with imbalanced data[J]. Electronics, 2022, 11(6): 898[6]Krishnan D. Detection of denialofservice attacks using stacked LSTM networks[C] Proc of Data Analytics and Management. Berlin: Springer, 2022: 229239[7]Koroniotis N, Moustafa N, Slay J. A new intelligent satellite deep learning network forensic framework for smart satellite networks[J]. Computers and Electrical Engineering, 2022, 99: 107745[8]Qazi E U H, Almorjan A, Zia T. A onedimensional convolutionalneural network (1DCNN) based deep learning system for network intrusion detection[J]. Applied Sciences, 2022, 12(16): 7986[9]舒豪, 王晨, 史崯. 基于BiLSTM和注意力机制的入侵检测[J]. 计算机工程与设计, 2020, 41(11): 30423046[10]Vinayakumar R, Soman K, Poornachandran P. Applying convolutional neural network for network intrusion detection[C] Proc of 2017 Int Conf on Advances in Computing, Communications and Informatics (ICACCI). Piscataway, NJ: IEEE, 2017: 12221228[11]Liu Y, Liu S, Zhao X. Intrusion detection algorithm based on convolutional neural network[J]. Transaction of Beijing Institute of Technology, 2017, 37(12): 12711275[12]王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 合肥: 中国科学技术大学, 2018[13]Zainel H, Koak C. LAN intrusion detection using convolutional neural networks[J]. Applied Sciences, 2022, 12(13): 6645[14]Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C] Proc of the IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2015: 19[15]Woo S, Park J, Lee JY, et al. Cbam: Convolutional block attention module[C] Proc of the European Conf on Computer Vision (ECCV). Berlin: Springer, 2018: 319[16]Do N Q, Selamat A, Lim K C, et al. An improved ensemble deep learning model based on CNN for malicious website detection[C] Proc of Int Conf on Industrial, Engineering and Other Applications of Applied Intelligent Systems. Berlin: Springer, 2022: 497504[17]Seth S, Singh G, Kaur K. Smart intrusion detection system using deep neural network gated recurrent unit technique[C] Proc of ICCCE 2021. Berlin: Springer, 2022: 285293[18]Zhao P, Fan Z, Cao Z, et al. Intrusion detection model using temporal convolutional network blend into attention mechanism[J]. International Journal of Information Security and Privacy, 2022, 16(1): 120[19]何春蓉, 朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2020, 43(1): 258266[20]Mohammadpour L, Ling T C, Liew C S, et al. A survey of CNNbased network intrusion detection[J]. Applied Sciences, 2022, 12(16): 8162[21]Manoharan G, Sivakumar K. A study on outlier detection using hybrid convolution neural network and novel bidirectional gated recurrent unit (CNNBiGRU)[J]. PalArch’s Journal of Archaeology of EgyptEgyptology, 2020, 17(7): 48024808[22]Halbouni A, Gunawan T S, Habaebi M H, et al. CNNLSTM: Hybrid deep neural network for network intrusion detection system[J]. IEEE Access, 2022, 10: 9983799849
|