[1]谷歌. 网络上的HTTPS加密——Google透明度报告[EBOL]. [20220422]. https:transparencyreport.google.comhttpsoverview?hl=zh_CN[2]Hou Jian, Liu Fangai, Lu Hui, et al. A novel flowvector generation approach for malicious traffic detection[J]. Journal of Parallel and Distributed Computing, 2022, 169: 7286[3]Xu Shijie, Geng Guanggang, Jin Xiaobo, et al. Seeing traffic paths: Encrypted traffic classification with path signature features[J]. IEEE Trans on Information Forensics and Security, 2022, 17: 21662181[4]Yan Yu, Qi Lin, Wang Jie, et al. A network intrusion detection method based on stacked autoencoder and LSTM[C] Proc of the IEEE Int Conf on Communications (ICC). Piscataway,NJ: IEEE, 2020: 16[5]Anderson B, Paul S, McGrew D. Deciphering malware’s use of TLS (without decryption)[J]. Journal of Computer Virology and Hacking Techniques, 2018, 14(3): 195211[6]Li Zhiqiang, Sun Lichao, Yan Qiben, et al. DroidClassifier: Efficient adaptive mining of applicationlayer header for classifying android malware[G] LNICST 198: Security and Privacy in Communication Networks. Berlin: Springer, 2017: 597616[7]Wang Yao, An Jing, Huang Wei. Using CNNbased representation learning method for malicious traffic identification[C] Proc of the 17th IEEEACIS Int Conf on Computer and Information Science (ICIS). Piscataway, NJ: IEEE, 2018: 400404[8]李敬. 基于卷积神经网络的加密代理流量识别方法[J]. 信息安全研究, 2023, 9(8): 722729[9]Bazuhair W, Lee W. Detecting malign encrypted network traffic using perlin noise and convolutional neural network[C] Proc of the 10th Annual Computing and Communication Workshop and Conf (CCWC). Piscataway, NJ: IEEE, 2020: 02000206[10]高源辰, 徐国胜. 基于集成学习策略的网络恶意流量检测技术研究[J]. 信息安全研究, 2023, 9(8): 730738[11]Zeek. The zeek network security monitor[EBOL]. [20230517]. https:zeek.org[12]曹自刚. 隐蔽式网络攻击检测关键问题研究[D]. 北京: 北京邮电大学, 2015[13]Aouedi O, Piamrat K, Bagadthey D. A semisupervised stacked autoencoder approach for network traffic classification[C] Proc of the 28th IEEE Int Conf on Network Protocols (ICNP). Piscataway, NJ: IEEE, 2020: 16[14]DataCon社区. DataCon开放数据集DataCon2020加密恶意流量数据集方向开放数据集[EBOL]. [20220422]. https:datacon.qianxin.comopendataopenpage?resourcesId=6[15]Wang Wei, Zhu Ming, Zeng Xuewen, et al. Malware traffic classification using convolutional neural network for representation learning[C] Proc of the 2017 Int Conf on Information Networking (ICOIN). Piscataway, NJ: IEEE, 2017: 712717
|