信息安全研究 ›› 2024, Vol. 10 ›› Issue (3): 216-.

• 学术论文 • 上一篇    下一篇

基于GHM可视化和深度学习的恶意代码检测与分类

张淑慧1,2,3,4胡长栋1王连海1,2,3,4徐淑奖1,2,3,4邵蔚1,2,3,4兰田1


  

  1. 1(齐鲁工业大学(山东省科学院)山东省计算中心(国家超级计算济南中心)济南250014)
    2(算力互联网与信息安全教育部重点实验室(齐鲁工业大学(山东省科学院))济南250014)
    3(山东省计算机网络重点实验室(山东省计算中心(国家超级计算济南中心))济南250014)
    4(山东省基础科学研究中心(计算机科学)齐鲁工业大学(山东省科学院))济南250014)

  • 出版日期:2024-03-23 发布日期:2024-03-08
  • 通讯作者: 胡长栋 硕士研究生.主要研究方向为恶意代码检测. 10431210649@stu.qlu.edu.cn
  • 作者简介:张淑慧 博士,研究员.主要研究方向为恶意代码检测和区块链. zhangshh@sdas.org 胡长栋 硕士研究生.主要研究方向为恶意代码检测. 10431210649@stu.qlu.edu.cn 王连海 博士,研究员.主要研究方向为数字取证和区块链. wanglh@sdas.org 徐淑奖 博士,研究员.主要研究方向为区块链. xushuj@sdas.org 邵蔚 博士.主要研究方向为区块链. shaow@sdas.org 兰田 硕士.主要研究方向为恶意代码检测. 10431200585@stu.qlu.edu.cn

Malware Detection and Classification Based on GHM Visualization  and Deep Learning

Zhang Shuhui1,2,3,4, Hu Changdong1, Wang Lianhai1,2,3,4, Xu Shujiang1,2,3,4, Shao Wei1,2,3,4, and Lan Tian1#br#

#br#
  

  1. 1(Qilu University of Technology (Shandong Academy of Sciences) Shandong Computing Center (National Supercomputing Jinan Center), Jinan 250014)
    2(Key Laboratory of Computing Power Network and Information Security, Ministry of Education (Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014)
    3(Shandong Provincial Key Laboratory of Computer Networks (Shandong Computing Center (National Supercomputing Jinan Center)), Jinan 250014)
    4(Shandong Fundamental Research Center for Computer Science (Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014)

  • Online:2024-03-23 Published:2024-03-08

摘要: 恶意代码的复杂性和变异性在不断增加,致使恶意软件的检测变得越来越具有挑战性.大多数变异或未知的恶意程序是在现有恶意代码的逻辑基础上进行改进或混淆形成的,因此发现恶意代码家族并确定其恶意行为变得越来越重要.提出了一种基于GHM(Gray,HOG,Markov)的新型恶意软件可视化方法进行数据预处理.与传统的可视化方法不同,该方法在可视化过程中通过HOG和马尔科夫提取出更加有效的数据特征,并构建了3通道彩色图像.此外,构建了基于CNN和LSTM的VLMal分类模型,对可视化图像进行恶意软件检测分类.实验结果表明,该方法可以有效地检测和分类恶意代码,具有较好的准确性和稳定性.

关键词: 恶意软件检测, 深度学习, 恶意软件分类, 内存取证, 可视化

Abstract: Malware detection is becoming more and more challenging due to the increasing complexity and variability of malicious code. Most mutated or unknown malicious programs are formed by improving or obfuscating the logic of existing malicious codes, so it is becoming more and more important to discover malicious code families and determine their malicious behaviors. In this paper, we proposed a novel malware visualization method based on GHM (Gray, HOG, Markov) for data preprocessing. Unlike the traditional visualization methods, this method extracts more effective data features through HOG and Markov in the visualization process, and constructs a threechannel color image. In addition, a VLMal classification model based on CNN and LSTM is constructed to realize the malware detection and classification of visual images. Experimental results show that this method can effectively detect and classify malicious code with good accuracy and stability.

Key words: malware detection, deep learning, malware classification, memory forensics, visualization

中图分类号: