信息安全研究 ›› 2024, Vol. 10 ›› Issue (3): 277-.

• 学术论文 • 上一篇    下一篇

基于增量学习的车联网恶意位置攻击检测研究

江荣旺魏爽龙草芳杨明   

  1. (三亚学院海南三亚572022)
    (容淳铭院士工作站海南三亚572022)
  • 出版日期:2024-03-23 发布日期:2024-03-18
  • 通讯作者: 江荣旺 硕士,副教授.主要研究方向为信息安全、车联网安全. rongwangjiang@sanyau.edu.cn
  • 作者简介:江荣旺 硕士,副教授.主要研究方向为信息安全、车联网安全. rongwangjiang@sanyau.edu.cn 魏爽 硕士,讲师.主要研究方向为区块链、人工智能、信息安全. weishuang1984@foxmail.com 龙草芳 硕士,副教授.主要研究方向为网络与分布式数据库、数字信息安全. 7814446@qq.com 杨明 博士,硕士生导师,中国密码学会高级会员.主要研究方向为信息安全、车联网安全、区块链. yangmpt@163.com

Research on Location Attack Detection of VANET Based on Incremental Learning

Jiang Rongwang, Wei Shuang, Long Caofang, and Yang Ming   

  1. (Sanya College, Sanya, Hainan 572022)
    (Academician Rong Chunming Workstation, Sanya, Hainan 572022)
  • Online:2024-03-23 Published:2024-03-18

摘要: 近年来,车辆恶意位置攻击检测中主要使用深度学习技术.然而,深度学习模型训练耗时巨大、参数众多,基于深度学习的检测方法缺乏可扩展性,无法适应车联网不断产生新数据的需求.为了解决以上问题,创新地将增量学习算法引入车辆恶意位置攻击检测中,解决了上述问题.首先从采集到的车辆信息数据中提取关键特征;然后,构建恶意位置攻击检测系统,利用岭回归近似快速地计算出车联网恶意位置攻击检测模型;最后,通过增量学习算法对恶意位置攻击检测模型进行更新和优化,以适应车联网中新生成的数据.实验结果表明,相比SVM,KNN,ANN等方法具有更优秀的性能,能够快速且渐进地更新和优化旧模型,提高系统对恶意位置攻击行为的检测精度.

关键词: 车联网, 恶意位置攻击检测, 增量学习, 深度学习, 机器学习

Abstract: In recent years, deep learning has been widely employed in the detection of malicious position attacks on vehicles. However, deep learning models necessitate extensive training time and possess a large number of parameters. Detection methods based on deep learning lack scalability and cannot accommodate the needs of continuously generated new data in vehicular networks. To address these issues, this paper innovatively introduces incremental learning algorithms into the detection of malicious position attacks on vehicles to solve the above problems.This approach first extracts key features from the collected vehicle information data. Subsequently, a malicious position attack detection system is constructed, utilizing ridge regression to quickly approximate the vehicular network’s malicious position attack detection model. Finally, the incremental learning algorithm is applied to update and optimize the malicious position attack detection model to adapt to newly generated data in the vehicular network.Experimental results demonstrate that this method surpasses other methods such as SVM, KNN, and ANN in terms of performance. It can swiftly and progressively update and optimize the old model, thereby enhancing the system’s detection accuracy for malicious position attack behaviors.

Key words: Internet of vehicles, Misbehavior Detection, Deep Learning, deep learning, machine learning

中图分类号: