[1]Zhang Y, Fan X, Jiang D, et al. A federated learning approach for secure and privacypreserving vehicular communications[J]. IEEE Trans on Vehicular Technology, 2021, 70(11): 1191711928[2]Wang C, Chen Y, Li Y, et al. Distributed anomaly detection in vehicular networks: A federated deep learning approach[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(4): 12151227[3]Alladi T, Gera B, Agrawal A, et al. DeepADV: A deep neural network framework for anomaly detection in VANETs[J]. IEEE Trans on Vehicular Technology, 2021, 70(11): 10221035[4]刘奕琳, 侯亚军, 王传军, 等. 基于深度学习的车联网入侵检测综述[J]. 软件学报, 2021, 15(11): 31123137[5]范慧丽, 王磊, 魏永生. 基于机器学习的车联网入侵检测综述[J]. 计算机工程与应用, 2021, 57(13): 19[6]Talpur A, Gurusamy M. Machine learning for security in vehicular networks: A comprehensive survey[J]. IEEE Communications Surveys Tutorials, 2021, 24(1): 13431357[7]张明明, 刘凯, 李贤慧, 等. 基于广义神经网络的网络攻击检测与分类方法[J]. 信息安全研究, 2023, 9(6): 593601[8]薛宏伟, 刘赢, 庄伟超, 等. 车联网环境下基于Stacking集成学习的车辆异常行为检测方法[J]. 汽车工程, 2021, 43(4): 501508, 536[9]Zhao S, Lyu Q, Wang H, et al. A hybrid deep learning model for collision forecasting under connected and automated vehicles[C] Proc of IEEE Intelligent Transportation Systems Conf (ITSC). Piscataway, NJ: IEEE, 2022: 3540
|