[1]Neuschmied H, Winter M, Stojanovic B, et al. APTattack detection based on multistage autoencoders[J]. Applied Sciences, 2022, 12(13): 68166816[2]Wang Li, Li Zhitang, Wang Qihong, et al. A novel technique of recognising multistage attack behaviour[J]. International Journal of High Performance Computing & Networking, 2010, 6(34): 174180[3]Haas, S, Fischer, M. GAC: Graphbased alert correlation for the detection of distributed multistep attacks[C] Proc of the 33rd Annual ACM Symp on Applied Computing. New York: ACM, 2018: 979988[4]Tao Xiaoling, Jia Fei, YuYuelin, et al. An intrusion alarm data association analysis method[C] Proc of the 19th IEEE Int Conf on Mobile Ad Hoc and Smart Systems (MASS). Piscataway, NJ: IEEE, 2022: 99107[5]Ramaki A A, Amini M, Atani R E. RTECA: Real time episode correlation algorithm for multistep attack scenarios detection[J]. Computers & Security, 2015, 49: 206219[6]王文娟, 杜学绘, 单棣斌. 基于动态概率攻击图的云环境攻击场景构建方法[J]. 通信学报, 2021, 42(1): 117[7]Yang Ju, Zhou Liang, Wang Le, et al. A multistep attack detection framework for the power system network[C] Proc of the 7th IEEE Int Conf on Data Science in Cyberspace (DSC). Piscataway, NJ: IEEE, 2022: 18[8]Holgado P, Villagrá V, Vázquez L, et al. Realtime multistep attack prediction based on hidden markov models[J]. IEEE Trans on Dependable and Secure Computing, 2017, 17(1): 134147[9]Zhang Xu, Wu Ting, Zheng Qiuhua, et al. Multistep attack detection based on pretrained hidden Markov models[J]. Sensors, 2022, 22(8): 28742874[10]Huang Yonghui, Sun Yi, Lin Kaixiang, et al. An effective reconstruction method of the APT attack based on hidden Markov model[J]. Journal of Circuits, Systems and Computers, 2022, 31(6): 22501082250108[11]Ramaki Ali Ahmadian, KhosraviFarmad Masoud, Bafghi Abbas Ghaemi. Real time alert correlation and prediction using Bayesian networks[C] Proc of the 12th Int Iranian Society of Cryptology Conf on Information Security and Cryptology (ISCISC). Piscataway, NJ: IEEE, 2015: 99103[12]Liu Jianyi, Liu Bowen, Zhang Ru, et al. Multistep attack scenarios mining based on neural network and Bayesian network attack graph[C] Proc of the 5th Int Conf on Artificial Intelligence and Security. Piscataway, NJ: IEEE, 2019: 6274[13]Zhou Peng, Zhou Gongyan, Wu Dakui, et al. Detecting multistage attacks using sequencetosequence model[J]. Computers & Security, 2021, 105: 102203102203[14]Mao Beifeng, Liu Jing, Lai Yingxu, et al. MIF: A multistep attack scenario reconstruction and attack chains extraction method based on multiinformation fusion[J]. Computer Networks, 2021, 198: 108340108340[15]Cheng Qiumei, Wu Chunming, Zhou Shiying. Discovering attack scenarios via intrusion alert correlation using graph convolutional networks[J]. IEEE Communications Letters, 2021, 25(5): 15641567[16]李洪成, 吴晓平. 支持告警序列差分隐私保护的网络入侵关联方法[J]. 计算机工程, 2018, 44(5): 128132[17]Li Zitong, Chen Jiale, Zhang Jiale, et al. Detecting advanced persistent threat in edge computing via federated learning[C] Proc of the 1st Int Conf on Security and Privacy in Digital Economy. Berlin: Springer, 2020: 518523[18]Sun Xiaoyan, Dai Jun, Liu Peng, et al. Using Bayesian networks for probabilistic identification of zeroday attack paths[J]. IEEE Trans on Information Forensics and Security, 2018, 13(10): 25062521[19]Milajerdi S M, Gjomemo R, Eshete B, et al. Holmes: Realtime APT detection through correlation of suspicious information flows[C] Proc of 2019 IEEE Symp on Security and Privacy (SP). San Francisco, CA: IEEE, 2019: 11371152
|