[1]Ponta S, Plate H, Sabetta A. Detection, assessment and mitigation of vulnerabilities in open source dependencies[J]. Empirical Software Engineering, 2022, 7(25): 31753215[2]Morgan S. Cybercrime to cost the world $10.5 trillion annually by 2025[EBOL].[20180922]. https:cybersecurityventures.comhackerpocalypsecybercrimereport2016[3]US Department of Homeland Security (DHS),Cybersecurity and Infrastructure Security Agency (CISA).CVE[EBOL]. [20231026]. https:cve.mitre.org[4]Jin S, Wang Y, Cui X, et al. A review of classification methods for network vulnerability[C] Proc of IEEE Int Conf on Systems. Piccataway, NJ: IEEE, 2009: 11711175[5]Wijayasekara D, Manic M, McQueen M. Vulnerability identification and classification via text mining bug databases[C] Proc of the 40th Annual Conf of the IEEE Industrial Electronics Society. Piscataway, NJ: IEEE, 2014: 36123618[6]Davari M, Zulkernine M, Jaafar F. An automatic software vulnerability classification framework[C] Proc of Int Conf on Software Security and Assurance (ICSSA). Piscataway, NJ: IEEE, 2017: 4449[7]Wang J A, Guo M. An ontology for vulnerability management[C] Proc of the 5th Annual Workshop on Cyber Security and Information Intelligence Research Cyber Security and Information Intelligence Challenges and Strategies. New York: ACM, 2011: 23172322[8]US Department of Homeland Security (DHS), Cybersecurity and Infrastructure Security Agency (CISA). Common weakness enumeration[EBOL]. [20231026]. https:cwe.mitre.org[9]Kowsari K, Jafari Meimandi K, Heidarysafa M, et al. Text classification algorithms: A survey[J]. arXiv preprint, arXiv:1904.08067, 2022[10]Chung J, Gulcehre C, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint, arXiv:1412.3555, 2014[11]Neuhaus S, Zimmermann T. Security trend analysis with CVE topic models[C] Proc of the 21st IEEE Int Symp on Software Reliability Engineering. Piscataway, NJ: IEEE, 2010: 111120[12]Na S, Kim T, Kim H. A study on the classification of common vulnerabilities and exposures using Nave Bayes[G] Advances on BroadBand Wireless Computing,Communication and Applications. Berlin: Springer, 2022: 657662[13]Aota M, Kanehara H, Kubo M, et al. Automation of vulnerability classification from its description using machine learning[C] Proc of IEEE Symp on Computers and Communications (ISCC). Piscataway, NJ: IEEE, 2020: 17[14]Aivatoglou G, Anastasiadis M, Spanos G, et al. A treebased machine learning methodology to automatically classify software vulnerabilities[C] Proc of IEEE Int Conf on Cyber Security and Resilience (CSR). Piscataway, NJ: IEEE, 2019: 312317[15]Aghaei E, Alshaer E. ThreatZoom: Neural network for automated vulnerability mitigation[G] LNICST 335: Proc of the 6th Annual Symp on Hot Topics in the Science of Security. Berlin: Springer, 2020: 2341[16]Das S, Serra E, Halappanavar M, et al. A framework for effective hierarchical multiclass classification of software vulnerabilities[C] Proc of the 8th IEEE Int Conf on Data Science and Advanced Analytics (DSAA). Piscataway, NJ: IEEE, 2021: 112[17]Sun X, Li L, Bo L, et al. Automatic software vulnerability classification by extracting vulnerability triggers[J]. Journal of Software: Evolution and Process, 2022: 5(18): 5773[18]Wang Q, Gao Y, Ren J. An automatic classification algorithm for software vulnerability based on weighted word vector and fusion neural network[J]. Computers & Security, 2023:8(26):102107
|