[1]Ahmad Z, Shahid Khan A, Wai Shiang C, et al. Network intrusion detection system: A systematic study of machine learning and deep learning approaches[J]. Transactions on Emerging Telecommunications Technologies, 2021, 32(1): e4150[2]黄屿璁, 张潮, 吕鑫, 等. 基于深度学习的网络入侵检测研究综述[J]. 信息安全研究, 2022, 8(12): 11631177[3] Yao R, Wang N, Liu Z, et al. Intrusion detection system in the smart distribution network: A feature engineering based AELightGBM approach[J]. Energy Reports, 2021, 7: 353361[4] Di Mauro M, Galatro G, Fortino G, et al. Supervised feature selection techniques in network intrusion detection: A critical review[J]. Engineering Applications of Artificial Intelligence, 2021, 101: 104216[5] Sarhan M, Layeghy S, Moustafa N, et al. Feature extraction for machine learningbased intrusion detection in IoT networks[JOL]. Digital Communications and Networks, 2022 [20231210]. https:doi.org10.1016j.dcan.2022.08.012[6]Fatani A, Dahou A, AlQaness M A A, et al. Advanced feature extraction and selection approach using deep learning and Aquila optimizer for IoT intrusion detection system[J]. Sensors, 2022, 22(1): 140[7] Rao K N, Rao K V, Pvgd P R. A hybrid intrusion detection system based on sparse autoencoder and deep neural network[J]. Computer Communications, 2021, 180: 7788[8] LopezMartin M, SanchezEsguevillas A, Arribas J I, et al. Supervised contrastive learning over prototypelabel embeddings for network intrusion detection[J]. Information Fusion, 2022, 79: 200228[9] Maldonado J, Riff M C, Neveu B. A review of recent approaches on wrapper feature selection for intrusion detection[JOL]. Expert Systems with Applications, 2022 [20240427]. https:doi.org10.1016j.eswa.2022.116822[10]AlYaseen W L, Idrees A K, Almasoudy F H. Wrapper feature selection method based differential evolution and extreme learning machine for intrusion detection system[J]. Pattern Recognition, 2022, 132: 108912[11]Alazab M, Khurma R A, Awajan A, et al. A new intrusion detection system based on MothFlame Optimizer algorithm[J]. Expert Systems with Applications, 2022, 210: 118439[12]王一丰, 郭渊博, 陈庆礼, 等. 基于对比学习的细粒度未知恶意流量分类方法[J]. 通信学报, 2022, 43(10): 1225[13]Yue Y, Chen X, Han Z, et al. Contrastive learning enhanced intrusion detection[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 42324247[14]Liu Q, Wang D, Jia Y, et al. A multitask based deep learning approach for intrusion detection[J]. KnowledgeBased Systems, 2022, 238: 107852[15]Alazzam H, Sharieh A, Sabri K E. A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer[J]. Expert Systems with Applications, 2020, 148: 113249[16]Alghanam O A, Almobaideen W, Saadeh M, et al. An improved PIO feature selection algorithm for IoT network intrusion detection system based on ensemble learning[J]. Expert Systems with Applications, 2023, 213: 118745[17]周杰英, 贺鹏飞, 邱荣发, 等. 融合随机森林和梯度提升树的入侵检测研究[J]. 软件学报, 2021, 32(10): 32543265[18]Kasongo S M. A deep learning technique for intrusion detection system using a recurrent neural networks based framework[J]. Computer Communications, 2023, 199: 113125[19]Kasongo S M. An advanced intrusion detection system for IIoT based on GA and tree based algorithms[J]. IEEE Access, 2021, 9: 11319911321
|