[1]McMahan H B, Moore E, Ramage D, et al. Federated learning of deep networks using model averaging[J]. arXiv preprint, arXiv:1602.05629, 2016[2]McMahan H B, Moore E, Ramage D, et al. Communicationefficient learning of deep networks from decentralized data[G] Artificial Intelligence and Statistics. Lauderdale, FL, USA: AISTATS, 2017: 12731282[3]Sun J, Yang X, Yao Y, et al. Verticalfederated learning without revealing intersection membership[J]. arXiv preprint, arXiv:2106.05508, 2021[4]Ion M, Kreuter B, Nergiz A E, et al. On deploying secure computing: Private intersectionsumwithcardinality[COL] 2020 [20231101]. https:www.ieeesecurity.orgTCEuroSP2020[5]Buddhavarapu P, Knox A, Mohassel P, et al. Private matching for compute[JOL]. IACR Cryptol ePrint Arch, 2020 [20231014]. https:eprint.iacr.org2020599[6]Rindal P, Schoppmann P. VOLEPSI: Fast OPRF andcircuitPSI from vectorOLE[G] Advances in Cryptology—EUROCRYPT. Berlin: Springer, 2021: 901930[7]朱悦, 庄媛媛. 联邦学习的个人信息保护合规分析框架[J]. 信息安全研究, 2023, 9(2): 162170[8]Yao A C. Protocols for secure computations[C] Proc of the 23rd Annual Symp on Foundations of Computer Science. Piscataway, NJ: IEEE, 1982: 160164[9]Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT extension (Full Version)[C] Proc of the USENIX Security Symposium. Berkeley, CA: USENIX Association, 2014: 797812[10]Shamir A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612613[11]Freedman M J, Nissim K, Pinkas B. Efficient private matching and set intersection[G] Advances in Cryptology—EUROCRYPT 2004. Berlin: Springer, 2004: 119[12]Patra A, Schneider T, Suresh, A,et al. ABY2.0: Improved mixedprotocol secure twoparty computation (full version)[C] Proc of the USENIX Security Symp. Berkeley, CA: USENIX Association, 2021: 21652182[13]Chanyaswad T, Chang J M, Kung S Y. A compressive multikernel method for privacypreserving machine learning[EBOL]. 2021 [20231101]. https:doi.org10.48550arXiv.2106.10671[14]BeaulieuJones B K, Wu Z S, Williams C, et al. Privacypreserving generative deep neural networks support clinical data sharing[EBOL]. 2017[20231101]. https:www.biorxiv.orgcontentbiorxivearly20170705159756.1.full.pdf[15]Courbariaux M, Hubara I, Soudry D, et al. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or -1[EBOL]. 2016[20231101]. https:arxiv.orgpdf1602.02830.pdf[16]Mohassel P, Zhang Y P, Secure M L. A system for scalable privacypreserving machine learning[C] Proc of the 38th IEEE Symp on Security and Privacy. Piscataway, NJ: IEEE, 2017: 1938
|