[1]安鹏, 李宏飞, 高铭, 等. 运营商数据安全合规检查技术研究与实践[J]. 信息安全研究, 2023, 9(7): 643647[2]张恩, 李会敏, 常键. 可验证的隐私保护Kmeans聚类方案[J]. 计算机应用, 2021, 41(2): 413421[3]Zhang Peng, Huang Teng, Sun Xiaoqiang, et al. Privacypreserving and outsourced multiparty Kmeans clustering based on multikey fully homomorphic encryption additively homomorphic encryption[J]. IEEE Trans on Dependable and Secure Computing, 2023, 20(3): 23482359[4]Dwork C. A firm foundation for private data analysis[J]. Communications of the Association for Computing Machinery, 2011, 54(1): 8695[5]何清, 庄福振, 曾立, 等. PDMiner: 基于云计算的并行分布式数据挖掘工具平台[J]. 中国科学: 信息科学, 2014, 44(7): 871885[6]李洪成, 吴晓平, 陈燕. MapReduce框架下支持差分隐私保护的Kmeans聚类方法[J]. 通信学报, 2016, 37(2): 125131[7]毛伊敏, 甘德瑾, 廖列法, 等. 基于Spark框架和ASPSO的并行划分聚类算法[J]. 通信学报, 2022, 43(3): 148163[8]Arthur D, Vassilvitskii S. Kmeans++: The advantages of careful seeding[C] Proc of the 18th Annual ACMSIAM Symp on Discrete Algorithms(SODA’07). New York: ACM, 2007: 10271035[9]傅彦铭, 李振译. 基于拉普拉斯机制的差分隐私保护Kmeans++聚类算法研究[J]. 信息网络安全, 2019, 19(2): 4352[10]Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing with working sets[C] Proc of the 2nd USENIX Workshop on Hot Topics in Cloud Computing(HotCloud 10). Berkeley, CA: USENIX Association, 2010[11]Dwork C. Differential privacy[C] Proc of the 33rd Int Conf on Automata,Languages and Programming. Berlin: Springer, 2006: 112[12]Dwork C, McSherry F, Nissim K, et al. Calibrating noise to sensitivity in private data analysis[C] Proc of the Theory of Cryptography Conf. Berlin: Springer, 2006: 265284[13]McSherry F, Talwar K. Mechanism design via differential privacy[C] Proc of the 48th Annual IEEE Symp on Foundations of Computer Science(FOCS’07). Piscataway, NJ: IEEE, 2007: 94103[14]McSherry F D. Privacy integrated queries:An extensible platform for privacy preserving data analysis[C] Proc of the 2009 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2009: 1930
|