[1]梁超, 王子博, 张耀方, 等. 基于知识图谱推理的工控漏洞利用关系预测方法[J]. 信息安全研究, 2024, 10(6): 498505[2]Choudhary N, Rao N, Katariya S, et al. Probabilistic entity representation model for reasoning over knowledge graphs[J]. arXiv preprint, arXiv:2110.13522, 2021[3]黄振, 单文政, 郭芙蓉, 等. 可信大模型政务问答系统设计与实现[J]. 信息安全研究, 2024, 10(增刊1): 191195[4]吴佩泽, 李光辉, 吴津字. 基于大语言模型的电力监控系统资产脆弱性管理技术研究[J]. 信息安全研究, 2024, 10(增刊1): 241245[5]Creswell A, Shanahan M, Higgins I. Selectioninference: Exploiting large language models for interpretable logical reasoning[J]. arXiv preprint, arXiv:2205.09712, 2022[6]Nickel M, Tresp V, Kriegel H P. A threeway model for collective learning on multirelational data[C] Proc of the 28th Int Conf on Machine Learning. ICML: Washington, 2011: 809816[7]Ren H Y, Hu W H, Leskovec J. Query2box: Reasoning over knowledge graphs in vector space using box embeddings[J]. arXiv preprint, arXiv:2002.05969, 2020[8]Ren H Y, Leskovec J. Beta embeddings for multihop logical reasoning in knowledge graphs[J]. arXiv preprint, arXiv:2010.11465, 2020[9]Minervini P, Arakelyan E, Daza D, et al. Complex query answering with neural link predictors[J]. arXiv preprint, arXiv:2011.03459, 2021[10]Yasunaga M, Ren H Y, Bosselut A, et al. QAGNN: Reasoning with language models and knowledge graphs for question answering[J]. arXiv preprint, arXiv:2104.06378, 2021 |