[1]杨泽明, 李强, 刘俊荣, 等. 面向攻击溯源的威胁情报共享利用研究[J]. 信息安全研究, 2015, 1(1): 3136[2]石波, 于然, 朱健. 基于知识图谱的网络空间安全威胁感知技术研究[J]. 信息安全研究, 2022, 8(8): 845853[3]Ouyang L, Wu J, Jiang X, et al. Training language models to follow instructions with human feedback[J]. Advances in Neural Information Processing Systems, 2022, 35: 2773027744[4]Weerawardhana S, Mukherjee S, Ray I, et al. Automated extraction of vulnerability information for home computer security[C] Proc of the Foundations and Practice of Security: 7th International Symposium, FPS 2014, Montreal, QC, Canada. Berlin: Springer International Publishing, 2015: 356366[5]Li T, Guo Y, Ju A. A selfattentionbased approach for named entity recognition in cybersecurity[C] Proc of the 15th Int Conf on Computational Intelligence and Security (CIS). Piscataway, NJ: IEEE, 2019: 147150[6]Marchiori F, Conti M, Verde N V. STIXnet: A novel and modular solution for extracting all STIX objects in CTI reports[C] Proc of the 18th Int Conf on Availability, Reliability and Security, 2023: 111[7]Zhou Y, Tang Y, Yi M, et al. CTI view: APT threat intelligence analysis system[J]. Security and Communication Networks, 2022, 2022(1): 9875199[8]Zhou Y, Ren Y, Yi M, et al. Cdtier: A Chinese dataset of threat intelligence entity relationships[J]. IEEE Trans on Sustainable Computing, 2023, 8(4): 627638[9]Ranade P, Piplai A, Joshi A, et al. Cybert: Contextualized embeddings for the cybersecurity domain[C] Proc of the 2021 IEEE Int Conf on Big Data (Big Data). Piscataway, NJ: IEEE, 2021: 33343342[10]Wang X, Liu R, Yang J, et al. Cyber threat intelligence entity extraction based on deep learning and field knowledge engineering[C] Proc of the 2022 IEEE 25th Int Conf on Computer Supported Cooperative Work in Design (CSCWD). Piscataway, NJ: IEEE, 2022: 406413 |