[1]Rajyashree R, Senthilkumar M, Saravanan G, et al. An empirical investigation of docker sockets for privilege escalation and defensive strategies[J]. Procedia Computer Science, 2024, 233: 660669[2]Shanthi K, Marurhi R. Machine learning approach for anomalybased intrusion detection systems using isolation forest model and support vector machine[C] Proc of the 5th Int Conf on Inventive Research in Computing Applications (ICIRCA). Piscataway, NJ: IEEE, 2023: 136139[3]Wang Yulong, Wang Qixu, Qin Xue, et al. Dockerwatch: A twophase hybrid detection of malware using various static features in container cloud[J]. Soft Computing, 2023, 27(2): 10151031[4]张光华, 王子昱, 蔡明伟. 基于不平衡数据的物联网异常流量检测[J]. 信息安全研究, 2024, 10(11): 10121019[5]Zheng Jiayi, Wang Zijian. System log anomaly detection based on spiking neural network trained with backpropagation[C] Proc of the 3rd Int Conf on Intelligent Communications and Computing (ICC). Piscataway, NJ: IEEE, 2023: 4855[6]Samir A, Pahl C. A controller architecture for anomaly detection, root cause analysis and selfadaptation for cluster architectures[C] Proc of the 11th Int Conf on Adaptive and SelfAdaptive Systems and Applications. Cambridge, UK: Elsevier, 2019: 7583[7]Berroukham A, Housni K, Lahraichi M, et al. Detection and localization of anomalous objects in video sequences using vision transformers and unet model[J]. Signal, Image and Video Processing, 2024, 18: 63796390[8]Songa A, Karri G. An integrated SDN framework for early detection of DDoS attacks in cloud computing[J]. Journal of Cloud Computing, 2024,13(1): 6486[9]Buschjger S, Honysz P, Morik K. Randomized outlier detection with trees[J]. International Journal of Data Science and Analytics, 2022, 13(2): 91104[10]Lu Siyang, Han Ningning, Wei Xiang, et al. SSDLog: A semisupervised dual branch model for log anomaly detection[J]. World Wide Web, 2023, 26(5): 31373153[11]Zou Zhuping, Xie Yulai, Huang Kai, et al. A docker container anomaly monitoring system based on optimized isolation forest[J]. IEEE Trans on Cloud Computing, 2019, 10(1): 134145[12]Chang C. Targettoanomaly conversion for hyperspectral anomaly detection[J]. IEEE Trans on Geoscience and Remote Sensing, 2022, 60(1): 128[13]林发鑫, 张健. 虚拟化平台异常行为检测系统的设计与实现[J]. 信息网络安全, 2022, 22(11): 6267[14]Wang Yue, Zhang Chengze, Yu Jianjun, et al. Towards massive log anomaly detection based on an enhanced multidimensional timedomain LSTM[C] Proc of the 9th IEEE Int Conf on Big Data Computing Service and Applications (BigDataService). Piscataway, NJ: IEEE, 2023: 197204 |